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Abstract — To achieve high throughput, parallel decoding 
of low density parity check (LDPC) codes is required, but 
needs a large set of registers and complex interconnection due 
to randomly located 1’s in a sparse parity check matrix of 
large block size. This paper proposes a memory-based 
decoding architecture for low density parity check codes using 
loosely coupled two data flows. Instead of register, 
intermediate values are optimally grouped and scheduled to 
store into the segmented memory, which reduces large area 
and enables a scalable architecture. The performance of the 
proposed decoder architecture is demonstrated by 
implementing a 1024 bit, rate-1/2 LDPC codes decoder. 

I.  INTRODUCTION 
ow density parity check (LDPC) codes are originally 
devised to exploit low decoding complexity by 
constructing a sparse parity check matrix. Since LDPC 

codewords does not have a maximized minimum distance due 
to the sparse parity check matrix, the typical minimum 
distance increases linearly with the block length. The error 
probability decreases exponentially for sufficiently long block 
length. Moreover the decoding complexity is linearly 
proportional to the code length. LDPC codes are applied to 
various areas such as data storage, digital subscriber line and 
CDMA, especially space time coded OFDM systems due to its 
scalability [8] [9] [10] [11]. Recent simulation results show 
that the performance of LDPC codes is close to that of turbo 
codes [5] [6]. 

Despite of these advantages, LDPC codes made little 
impact on the information theory community because of the 
storage requirements in encoding and the computational 
demands of decoding. The Modern VLSI technology enables 
decoding architectures to exploit the benefit of inherently 
parallel decoding algorithm for LDPC codes. Blanksby et al. 
implemented a 1-Gb/s fully parallel decoder in which the 
message passing algorithm is directly mapped [7]. This 
architecture, however, requires complex hand-wired routing 
between concurrent processing elements corresponding to 
each node of the message passing algorithm, leading to the 
average net length of 3mm and the total die size of 52.5mm2. 
On the other side, Yeo et al. proposed an area efficient 
architecture which serializes the computations of each row 
and column by sharing computation units. Consequently, one 
iteration in decoding a codeword takes 9612 cycles and wide 

input multiplexers are required to select one of 18432 
intermediate values to be fed to shared computation units. 
These two counter examples show that high throughput LDPC 
codes decoder architecture should exploit the benefit of 
parallel property of the decoding algorithm while reducing the 
interconnection complexity. 

Based on this observation the paper proposes an 
architecture that reconstructs the data flow of the iterative 
decoding to minimize the interconnection. While the previous 
implementations iteratively calculate messages that depends 
on each other, the proposed architecture separates the data 
flow into two paths by duplicating the computation units 
except row and column summation. Each path calculates one 
of row and column summation and completes the whole 
iteration path by referencing the summation of the other path. 
Furthermore, the messages are stored into segmented memory 
to reduce the area. 

The rest of this paper is organized as follows. Section 2 
summarizes low density parity check codes and their decoding 
algorithm. Section 3 proposes a new architecture for high 
throughput LDPC codes decoder based on segmented memory. 
An implementation example of the proposed architecture is 
presented in Section 4 along with its performance result, and 
Section 5 provides some concluding remarks. 

II. LOW DENSITY PARITY CHECK CODES 
LDPC codes which were first introduced by Gallager in 

1962 [1] is defined by a binary linear block code of length n 
and a parity check matrix H with a column weight γ and a row 
weight ρ: (n, γ, ρ). The parity check matrix H has a total 
number of n columns and J rows, where J represents the total 
number of parity check equations of the code. There are 2K 
distinct codewords, where K is the message length, K = n – J. 
The numbers γ and ρ have to remain small with respect to n in 
order to obtain a sparse matrix H and they have are related to 
n and J as expressed in the following equation: n Jγ ρ× = × . 
The code rate of LDPC codes is defined as 1 /R γ ρ= − . 
Figure 1 shows an example H matrix of (20, 3, 4) LDPC code. 

 
A. Graph Representation 
Kschischang et al. generalized the principles of Bayesian 

networks and Tanner graphs and developed a graphical model 
called “factor graph”, which is a bipartite graph that expresses 
how a global function of many variables factors into a product 
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of local functions [2]. In addition they showed how the a 
posteriori probability can be calculated by the probability 
propagation algorithm with a function of discrete variables [3]. 
Wiberg derived the decoding performance and analyzed the 
iterative decoding of the codes with the graph structure [4]. 

Figure 2 shows a factor graph for (7,4) Hamming code, 
which consists of two set of nodes, i.e. variable nodes, xj and 
check nodes, Si. Each row in the parity check matrix 
corresponds to variable nodes represented as circles and each 
column to check nodes represented as squares. The edges in 
the factor graph are constructed by the 1’s in the H matrix. 
Given the factor graph, the message passing algorithm can be 
expressed. A posteriori probabilities for each bit in the 
codeword is calculated in the variable nodes and passed to 
check nodes through edges. Based on these probabilities, 
parity check operations are executed in each check nodes and 
the results are passed to variable nodes. Therefore fully 
parallel decoding architecture is inherently generated from the 
factor graph. Each variable and check node is implemented as 
a processing unit that generates the variable and check 
messages as many as the number of edges. 

 
B. Motivation 
Direct conversion of the message passing algorithm, 

however, faces with large storage requirement and complex 
interconnection because the number of message is twice as 
many as the number of edges and their interconnections are 
complex as shown in the factor graph. The proposed 
architecture aligns and concatenates these messages by row or 

column and stores them in segmented memories instead of 
mapping them to registers to alleviate the storage requirements. 
This is possible because the number of 1’s in a row or column 
is small and small number of bits is sufficient to represent a 
message. 

Employing memory, however, prevents simultaneous 
accesses to several elements in it. Therefore messages are 
grouped into as many as the number of parallel processing 
groups and stored into segmented memories. When grouping, 
the dependencies between row and column should be 
considered to minimize the processing latency. Detailed 
techniques on grouping and corresponding scheduling 
algorithm are described in the following section. 

 
C. Decoding Algorithm 
Unlike the general parity check codes, LDPC codes cannot 

be decoded optimally since it is NP-complete problem. Instead, 
an approximate algorithm called iterative probabilistic 
decoding is used, which is also known variously as sum-
product [4] or belief propagation [12]. The sum-product 
algorithm which can be regarded as a message passing 
algorithm on a bipartite graph is described below. 

1) Initialize a variable node to the probability ratio of the 
corresponding received bit. 

2) Horizontal step: Compute the likelihood ratio 
corresponding to outgoing messages of variable nodes and 
propagate to check nodes. 
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3) Vertical step: From the variable messages, compute 
probability ratio corresponding to the outgoing check 
messages and propagate to variable nodes. 
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4) Create a tentative bit-by-bit decoding xi using pseudo-
posteriori probability. 

5) Check if x·HT = 0 is satisfied. 
6) If the condition in step 5) is satisfied, the decoding 

algorithm finishes. Otherwise the algorithm repeats from the 
step 2). 

The symbols, ∆ and Λ, represent the outgoing messages of 
the check and the variable nodes, respectively, and N(i) , M(j) 
represent the set of neighbor nodes connected by edges of 
check node i and variable node j, respectively. The not-
notation(’) which is marked as subscript in the indexes means 
that the product is calculated over the indexes excluding its 
own index. Detailed explanation of the algorithm including 
the equations can be found in [13]. To reduce the hardware 
cost, the products in the equations of the above algorithm 
description are usually transformed into summation by using 
log-likelihood probability. Therefore the resulting equations 
are as follows and the proposed architecture constructs two 
paths of data flow by combining these equations. 
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Figure 1 Example parity check matrix of (20, 3, 4) LDPC Code
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Figure 2 Factor graph for (7, 4) Hamming code 



 

III. PROPOSED LDPC DECODER ARCHITECTURE 
Since the functions of variable nodes and check nodes are 

simple, the main problem in the implementation is how to pass 
the large number of messages to other nodes. In the previous 
implementations, the problem is solved by providing complex 
interconnections. To tackle this problem, this paper proposes 
an architecture based on segmented memory to reduce overall 
area and enable high throughput decoding. 

 
A. Duplicating the Data Flow 
As shown in the Figure 5 (a), the previous data flow base 

on the message passing decoding generates considerable 
amount of messages from variable nodes to check nodes and 
vice versa which results in complex interconnection. Since ∆’s 
in the same row are summed up to calculate their neighbor Λ’s 
located at different columns and vice versa. Therefore 
complex interconnection cannot be avoided if the messages 
themselves are passed between nodes. The close look at the 
iterative decoding algorithm, however, tells that vertical and 
horizontal steps can be broken down to the summation of all 
the elements in the same row or column and subtraction of its 
own value from the summation. From this observation, this 
paper proposes an architecture which has two separate data 
flow by duplicating the processing elements except the 
summation. 

In fact, complex interconnection is required to sum up the 
intermediate values in the same row or column which are 
aligned in the other way. To resolve this problem each data 
flow calculates only one of row and column summation value 
and passed it to other data flow. Since each data flow has the 
whole processing elements, the computation units for ∆ and Λ 
memory calculate row and column summation respectively 
and simply these values, not the all messages, are fed into the 
other to construction complete iteration path.  Therefore the 
resulting intermediate values can be written back to the same 
memory address where they are read for the next iteration. 
Thus index generation for writing results to each other’s path 
is no longer necessary. This duplicated data flow is shown in 
the Figure 3 (b). As the whole row and columns are not 
processed simultaneously, duplicating processing units is not 
significant overhead. Precisely speaking, the intermediate 
values in the ∆ and Λ memory is now no longer ∆ and Λ 
define in the subsection 2.2. 

 
B. Quantization and Segmentation 
Due to the inherent robustness of Log-likelihood Ratio, ∆ 

and Λ can be quantized into small number of bits. According 
to our experiment on the quantization effect against the 
number of bits in both integer and fractional parts, fractional 
part should be more emphasized than integer part and 5 bits 
which consists of 2 bit for integer part and 3 bits for fractional 
part are sufficient enough to express the ∆ and Λ. Therefore ∆ 
and Λ in the same row or column can be concatenated into 
one word and each row or column operation is enabled by just 
one memory read/write. 

In addition, ∆ and Λ memory is segmented to remove 
wasted cycles due to memory read and write. In other words, 
memory read and write at a row or a column occur while 
another row or column is used to calculate the summation 
value in the processing unit. Rows and columns which will be 
processed in parallel to achieve high throughput are also 
stored in different segments of memory. 

 
C. Scheduling 
If the intermediate values are grouped and stored into the 

segmented memory as described in the subsection 3.2, how 
the rows and columns are grouped and scheduled should be 
determined first. Since there are dependencies between each 
rows and columns, to find an optimum schedule that minimize 
latency due to the dependencies takes considerable amount of 
time. There may be heuristic algorithms and the authors 
propose an algorithm that reduces required rows and 
determine their order based on the given number of column 
groups are described below: 

1) Make n group of columns which have common rows as 
many as possible. 

2) Extract exclusive row list that is required to each column 
group 

3) Sort each column group by the number of required rows 
4) Put the group which requires smallest number of rows 

into a sequence. 
5) Remove the rows of the just inserted column groups 

from the other column groups. 
6) If the ordering is completed, the algorithm halts. 

Otherwise repeats from step 3). 
Though the ordering can be determined for a given number 

of groups, the problem of how many columns are grouped into 
a group still remains. The number of groups can be 
determined after ordering for several numbers of groups are 
generated. For each case maximum required number of rows 
are varies not linearly proportional to number of groups, while 
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the processing cycles are linearly proportional. Therefore 
some trade-offs can be done between area and processing time. 
Figure 4 shows some experimental result of ordering for 
several numbers of groups. The bar in the graph represents 
maximum number of rows which corresponds the hardware 
cost and total cycles for one iteration. The break line 
represents the product of these two values as a measure of 
trade-off between throughput and hardware cost. 

IV. IMPLEMENTATION AND PERFORMANCE 
We design a (1024, 3, 6) LDPC code decoder using the 

proposed architecture. The block diagram of our 
implementation is plotted in Figure 5. The overall architecture 
is divided into two paths according to ∆ and Λ memory. In 
each path there are processing elements which consists of 
lookup tables for the functions, log(tanh(x)) and atanh(exp(x)), 
and adders for each segmented memory. And there is array of 
D F/F for easy accessing of row and column summation 
values and multiplexers to feed them to corresponding 
processing elements at the other side. Simply incrementing the 
address of segmented memory, processing elements read and 
write the intermediate values to calculate the summation. 
Column summation values are bit-by-bit decoded according to 
their sign bits and become final output. 

The performance of the proposed architecture with 64 
parallel processing for (1024, 3, 6) LDPC codes is 
summarized in Table 1. Bit rate is comparable to the fully 
parallel architecture implemented by Blanksby et al., but 
significant area reduction is achieved. While the number of 
iterations is determined to 64 from the architecture of 
Blanksby’s implementation, there is no restriction in the 
proposed architecture and thus we can choose 8 iterations. 
Most of the area of the proposed architecture is occupied by 
the ∆ and Λ memory, and this fact proves that the duplicating 
the processing elements is a little overhead. The case when the 
intermediate values are store in the D F/F’s instead of 
segmented memory is also shown in the Table 1. This 
improves bit rate a little by removing a few cycle of memory 
read/write latencies but the area overhead is considerable. 

 
 

 Blanksby [9] Segmented Memory D F/F 
Technolog
y 0.16 um 0.25 um 0.25 um

Bit rate 1 Gbps 853 Mbps 960 Mbps

Area 
52.5 mm2 

 
 

4.75 mm2 

MEM:        3.05 mm2 
Other:         1.78 mm2 

8.71 mm2

6.12 mm2

2.59 mm2

 

V. CONCLUSION 
Large storage elements and complex interconnection are the 

main obstacles in VLSI implementation of the LDPC codes 
decoders while their decoding complexity is relatively low. 
This paper has proposed a memory segmentation technique 
and a corresponding scheduling algorithm for memory-based 
LDPC codes decoding architecture. Compared to the fully 
parallel architecture, the proposed architecture saves the 
overall area significantly and simplifies interconnection by 
storing intermediate values (∆ and Λ) into segmented memory 
associated with rows and columns. Since the overall structure 
of the proposed architecture is highly regular, it is easy to 
scale up and down the parallelism considering a given design 
constraints.  
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