



Abstract— This paper presents a VLSI implementation of a

high-throughput and area-efficient MIMO detector. We propose

a modified Dijkstra's algorithm and a pre-calculation technique to

improve the throughput by allowing overlapped processing. In

addition, we propose a simple approximation of L2-norm to

reduce the computational complexity without degrading the error

performance noticeably. A MIMO detector based on the proposed

algorithm is implemented using a 0.18-μm CMOS technology,

which occupies 0.49 mm2 with 25.1K equivalent gates and shows a

throughput of over 300 Mbps.

Index Terms— Multi-input multi-output, maximum-likelihood

(ML) detection, sphere decoding, very large scale integration

(VLSI), wireless communications.

I. INTRODUCTION

The MIMO communication system is associated with

multiple spatial streams to extend channel capacity [1]. The

large channel capacity can be used to boost the data rate, but

much complicated signal processing is inevitably required

because of the multiplicity of spatial streams as well as the

interferences among them.

Aiming at a high-throughput, area-efficient VLSI

architecture, this paper proposes new methods to detect the

MIMO symbols, and presents an implementation based on

them. The proposed MIMO detector is the first realization of

the sphere decoder (SD) based on Dijkstra's algorithm. To

enhance the throughput without incurring a significant

degradation of the error performance, the original Dijkstra's

algorithm is modified to enable overlapped processing. To

improve the throughput further, we pre-calculate the best

candidate to be expanded in the next iteration. Due to the

algorithmic modification as well as the pre-calculation, the

critical path delay of the proposed architecture is reduced to the

delay of tree expansion. In addition, we propose a simple

approximation of L
2
-norm to reduce both the hardware

complexity and the critical path delay. The proposed MIMO

detector is implemented in a 0.18-μm CMOS technology,

which occupies 0.49 mm
2
 and shows a throughput of over 300

Mbps in the environment of high signal-to-noise ratio (SNR).

The rest of the paper is organized as follows. Section II

describes the system model and the original Dijkstra's

algorithm for the MIMO detection. Section III proposes the

modified Dijkstra's algorithm and the pre-calculation technique.

Section IV presents the architecture of the proposed MIMO

detector with a simple approximation of L
2
-norm. In Section V,

the performance of the proposed algorithm is evaluated, and the

implementation results of the proposed MIMO detector is

compared with the previous works. Finally, concluding

remarks are made in Section VI.

II. MIMO DETECTION

A. System Model

Let us consider a NT  NR MIMO communication system

that employs NT transmitting antennas and NR receiving

antennas. The corresponding baseband-equivalent system can

be modeled as

 yc = Hc∙xc + nc, (1)

where yc is the NR  1 received symbol vector, Hc is the NR 
NT channel matrix, xc is the NT  1 transmitted symbol vector,

and nc is the NR  1 additive noise vector. Each symbol in xc is

drawn from a constellation. (1) can be decomposed into the real

domain as

 y = H∙x + n. (2)

In (2), H, y, x, and n are defined as

   

   
c c

c c

Re Im

Im Re

  
  
 

H H
H

H H
, (3)

 y = [Re(yc
T
) Im(yc

T
)]

T
, (4)

 x = [Re(xc
T
) Im(xc

T
)]

T
, (5)

 n = [Re(nc
T
) Im(nc

T
)]

T
, (6)

where Re(v) and Im(v) denote the real and the imaginary part of

v, respectively. In this paper, we will take into account the real-

valued model expressed in (2), assuming that N = 2NT = 2NR w-

ithout loss of generality.

B. MIMO Detection Using Dijkstra's Algorithm

Given y and H, the maximum-likelihood (ML) MIMO

detection is to find the optimal x such that

2

arg min
N

 
x O

y H x , (7)

where O is the constellation in the real-valued model. In

16-QAM, for example, O = {-3, -1, +1, +3}. By applying the

QR-decomposition to H, (7) can be simplified to

2 2

ˆarg min arg min
N N 

     
x O x O

y Q R x y R x , (8)

where Q is an orthogonal matrix, R is an upper triangular

matrix, and ŷ is Q
T
y. In the optimal solution in (8), the cost

function is proportional to the square of Euclidean distance,

||ŷ-Rx||
2
, which can be recursively calculated as

Implementation of a High-throughput and Area-efficient MIMO Detector

Based on Modified Dijkstra's Search

Tae-Hwan Kim and In-Cheol Park
Department of EE, KAIST

Yuseung-gu, Daejeon, Republic of Korea

1

ˆ
N

n n ni ii n
b y r x

 
  , (9)

2

1n n n nn nPED PED b r x   , (10)

where ŷn is the n-th element of ŷ, rij is the (i, j)-th element of R,

xi is the i-th element of x, and PEDn is the partial Euclidean

distance (PED) calculated at the n-th layer. Starting from

PEDN+1=0, (10) is recursively calculated until it reaches the

final cost, PED1. Note that PEDn is always not less than PEDn+1

because the second term on the right side in (10) is

non-negative.

After constructing a decoding tree where every node except

the root corresponds to a symbol in the symbol vector, the

symbol detection can be regarded as a tree search problem.

Dijkstra's algorithm to find the shortest path in a graph can be

applied to the MIMO detection [2][3]. Fig. 1(a) shows the

conceptual flow of the algorithm, where a candidate associated

with the best metric is selected in a greedy manner and it is

expanded into the lower layer. When the algorithm is applied to

the MIMO detection, each candidate corresponds to a node in

the decoding tree, and its metric is the PED. The detailed

algorithm is described below, and an example of the MIMO

detection based on this algorithm is shown in Fig. 1(b).

1) C is the candidate set, and its size, |C|, is constrained to s.

Initially, C contains only the root node of the decoding tree

and its PED is set to 0.

2) CurrentBest←MinPED(C), where MinPED(C) selects the

candidate having the smallest PED in C. If CurrentBest is in

the lowest layer, stop the algorithm.

3) Children←TreeExpand(CurrentBest), where TreeExpa-

nd(CurrentBest) is the tree-expansion from CurrentBest

according to (9) and (10). The size of Children is |O|.

4) C←Evict((C-{CurrentBest}) Children, s) where Evi-

ct(A, s) removes bad candidates from A if |A|>s. Go to 2).

To generate the optimal solution, the original Dijkstra's

algorithm has no constraint of |C|, which means s can be infinite.

However, s should be constrained in order to make the

hardware implementation feasible, and the performance is

reported to be near-optimal if s is moderately large [2][3]. In

contrast to the general SD [4], this algorithm does not need any

enumeration to determine the visiting order of sub-trees. In

terms of the number of visited nodes, this algorithm shows

much lower complexity [2] than depth-first search (DFS) SD or

K-best [5], meaning that it is more suitable for achieving the

high-throughput. However, there are little studies on the

efficient realization of this algorithm.

III. PROPOSED ALGORITHM

A. Modified Dijkstra's Algorithm for Overlapped Processing

The original algorithm introduced in Section II is iterative,

and each of the iteration consists of the three basic steps as

shown in Fig. 1(a). In the first and third steps, we need to sort

the candidate set or to do minimum/maximum operations.

Additionally, as the eviction of the bad candidate is performed

for the union of the previous candidate set and the new

candidates generated by the tree-expansion, we cannot perform

the tree-expansion in parallel with the eviction. To achieve a

high-throughput, therefore, we need to develop a deep pipeline

architecture that necessitates a large number of pipeline

registers to store the intermediate results and the candidates. In

addition, the deep pipeline lengthens the detection latency.

Observing the eviction process of the bad candidates in the

original algorithm, we can see that there is only a little

difference between two lists of surviving candidates obtained

by performing the eviction process before and after the

tree-expansion. In other words, the surviving candidates in

Evict((C-{CurrentBest}) Children, s) are similar to those in

Evict((C-{CurrentBest}), s-|O|). Let us suppose a candidate

that is not evicted for the former eviction process but evicted for

the latter eviction process. It is very unlikely for the candidate

to survive as a final solution. This algorithmic behavior

becomes clear if s is large enough to guarantee the near-optimal

performance.

Motivated by this observation, the last two steps in Fig. 1(a)

are performed in a completely overlapped manner in the

proposed algorithm. In other words, the eviction is processed in

parallel with the tree expansion. In the proposed algorithm, the

candidates are classified into two groups each of which is kept

in a separate list. One list called the expanded list has only the

candidates generated by the tree-expansion in the previous

iteration, and the other list called the candidate list contains the

surviving candidates. Fig. 2 shows the conceptual flow of the

proposed algorithm. The current best candidate is first selected

8.5 2 11 3

10 7 4 9 6 8 12 13

5 9
15 8

… …
A node in the candidate set.

A node which was evicted for the set-size constraint.

A node which was expanded and replaced by its

children in the candidate set.

CurrentBest

Tree-expansion from

the best candidate

Eviction of the bad

candidates for the set-

size constraint.

Picking the best

candidate from the

candidate set

(a) (b)

Candidate set

Fig. 1. (a) Conceptual flow of the original Dijkstra’s algorithm for MIMO

symbol detection. (b) A detection example where the candidate set size is

constrained to 4 and the number of a node represents the PED of the node.

Tree-expansion from the

best candidate
Sort & Eviction of the

bad candidates for the

set-size constraint.

Picking the best

candidate from the

candidate list & the

expanded list

Candidate listExpanded list

Fig. 2. Conceptual flow of the proposed algorithm.

among the candidates in the two lists. The candidate list is

updated by merging the expanded list and performing eviction.

Note that the expanded list was generated by the tree-expansion

of the previous iteration. Hence, the tree-expansion from the

current best candidate can be performed in parallel with the

sorting and eviction.

To reduce the sorting complexity, the strictness of sorting

can be relaxed by employing the distributed sorting technique

proposed in [6]. The following is the modified Dijkstra's

algorithm proposed for the MIMO detection, where the

candidate list is again divided into two sub-lists, A and B:

1) A and B are two candidate lists whose sizes are constrained

to (s-|O|)/2. E is the expanded list having the candidates

generated by the tree-expansion in the very previous

iteration. The candidates in these lists are sorted according to

the PED, i.e., Ai.PED ≤ Aj.PED, Bi.PED ≤ Bj.PED, and

Ei.PED≤Ej.PED for 1≤i≤j, where Ai is the i-th candidate in

A, and Ai.PED is the PED of Ai. Initially, A=B=Ø , and E

contains only the root node whose PED is set to 0.

2) CurrentBest←MinPED({A1,B1,E1}). In this computation,

A1 is not considered if A = Ø . Similarly, B1 is not considered

if B = Ø . If CurrentBest is in the lowest layer, stop the

algorithm.

3) A←SortEvict(A {E1,E3,…} - {CurrentBest}, (s - |O|) / 2).

B←SortEvict(B {E2,E4, … } - {CurrentBest}, (s - |O|) / 2).

SortEvict(X, s) is to sort X by the PED and to evict the bad

candidates if |X|>s.

4) E←TreeExpandSort(CurrentBest), where TreeExpandSo-

rt(CurrentBest) is the same as TreeExpand(CurrentBest)

except that the resulting E={E1,…E|O|} is sorted by the PED.

Go to 2).

TreeExpandSort(∙) in the above algorithm produces the

sorted list of the expanded candidates. In the real-valued

MIMO system, the sorting can be simply performed by

comparing bn with rnn [7]. This can be performed before the

addition of the PED increment in (10), so the delay additionally

needed to sort the expanded candidates is negligible.

In 3) of the above algorithm, the candidates in E are

distributed into two candidate lists for SortEvict operations.

Note that E is divided into {E1, E3, ...} and {E2, E4, ...} rather

than {E1,, E|O|/2} and {E|O|/2+1, ..., E|O|}. This arrangement

prevents good candidates from being clustered in one of the two

lists, and is effective in relieving the performance degradation

caused by the distributed sorting.

SortEvict operation that merges two sorted lists into another

sorted one requires less computation than the usual sorting. In

the proposed algorithm, its complexity is further lowered by

reducing the number of elements to be sorted. Two SortEvict

operations each of which merges two sorted lists whose sizes

are (s-|O|)/2 and |O|/2 are required in the proposed algorithm,

whereas the original algorithm requires one sorting operation to

merge two sets whose sizes are s and |O|. Though the

distributed sorting can be employed in the original algorithm,

two sorting operations are required to merge two sets whose

sizes are s/2 and |O|/2.

The overlapped processing of eviction and tree expansion

allows us to increase the operating frequency without

employing a deep-pipeline architecture. As the overlapped

processing is enabled by modifying the original algorithm, it

does not induce any additional computations. However, the

error performance may be degraded a little, because the

proposed algorithm modifies the original algorithm to overlap

the processing. Experimental results show that the performance

degradation is negligible if s is as large as 16, as will be

presented in Section V.

B. Pre-decision of the Best Candidate by Difference

Comparisons

By using the algorithm proposed in the previous subsection,

each iteration can be composed with two steps depicted in Fig.

2. The first step picks the best candidate, which was formally

expressed as CurrentBest←MinPED({A1,B1,E1}), where A1, B1,

and E1 are the best candidates in the sorted lists of A, B, and E,

respectively. This step can be achieved by simple comparisons,

but cannot be parallelized with the following step, because the

next step is dependent on the choice of the current best

candidate, CurrentBest.

We can pre-calculate the comparisons to decide the next best

candidate, NextBest, which will be expanded in the next

iteration. Considering the current candidates and the expanded

candidates generated by the tree-expansion, we can pre-decide

NextBest as follows:

2 1 1 1 1

1 2 1 1 1

1 1 2 1 1

MinPED({ , , , }) if

MinPED({ , , , }) if

MinPED({ , , , }) if

A B E P CurrentBest A

NextBest A B E P CurrentBest B

A B E P CurrentBest E




 
 

, (11)

where P1 is the best child expanded from CurrentBest. Let

MinPEDdiff(X,C) represent the candidate in X that has the

smallest PED difference from C. In other words, if

Y=MinPEDdiff(X,C), Y is closest to C in terms of PED among

all the candidates in X. If C.PED is not greater than the PED of

every candidate in X, MinPEDdiff(X,C) is equivalent to

MinPED(X). As CurrentBest is the best candidate in the current

candidate lists, it is clear that the PED of CurrentBest is not

greater than those of A1, A2, B1, B2, E1, and E2. As the new

candidates are generated by expanding CurrentBest and the

PED increases monotonically in (10), the PED of CurrentBest

is not greater than that of P1, either. Therefore, the condition

holds if C is CurrentBest, which means that we can replace

MinPED({V, W, Y, Z}) in (11) with MinPEDdiff({V, W, Y, Z},

CurrentBest), where {V, W, Y, Z} corresponds to one of {A2, B1,

E1, P1}, {A1, B2, E1, P1}, and {A1, B1, E2, P1} according to the

case. Additionally, MinPEDdiff({V, W, Y, Z}, CurrentBest) can

be calculated as

 MinPEDdiff({MinPEDdiff(a{V,W,Y},aCurrentBesta),aZ},aaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaCurrentBest). (12)

As Z in (12) is generated by expanding CurrentBest, the PED

difference between CurrentBest and Z is equal to the PED

increment corresponding to the second term in the right hand

side of (10). Note that the PED increment is available before

finishing the tree-expansion, and MinPEDdiff({V,W,Y},

CurrentBest) can be calculated in parallel with the calculation

of PED increment. Therefore, the pre-decision of NextBest can

be performed in parallel with the tree-expansion without

incurring any additional delay.

Fig. 3 shows the proposed algorithm associated with the

pre-decision of the next best candidate. In this algorithm,

picking the best candidate is just selecting the candidate

indicated by the pre-decision calculated in the previous

iteration. As a result, we can effectively eliminate the delay of

the comparison needed to select CurrentBest at the cost of a

little additional computation needed to compare the PED

difference instead of the PED itself.

IV. PROPOSED MIMO DETECTOR

This section presents the architecture of a MIMO detector

developed based on the algorithms proposed in the previous

section. The architecture aims at 4  4, 16-QAM MIMO

systems. As we are taking into account the system expressed in

(2), N = 8 in this case. To further reduce the computational

complexity without sacrificing the performance, we propose a

simple approximation of L
2
-norm in the tree-expansion.

A. Overall Architecture

The overall architecture of the proposed MIMO detector is

depicted in Fig. 4. The major component is the detection core

that performs the iterative algorithm proposed in the previous

section. In each cycle, it produces new candidates. As shown in

Fig. 4, the candidates are kept in two sorted lists of candidates,

A={A1,A2,…A6}, B={B1,B2,…B6}, and a sorted list of expanded

candidates, E={E1,E2,E3,E4}. The best candidate to be

expanded is selected by the whichBest signal calculated in the

previous iteration. The tree-expansion unit expands the

decoding tree from the current best candidate, and the

permutation unit simply arranges the expanded candidates

according to the permutation vector calculated by the ordering

unit. The PED differences between the current best candidate

and the other candidates which can be expanded in the next

iteration are calculated in parallel with the tree-expansion, and

the whichBest signal is calculated by comparing the minimum

PED difference and the minimum PED increment of the

expanded candidates.

Two merging units are required for the SortEvict operations,

each of which produces a sorted list of size 6 by merging two

sorted lists whose sizes are 6 and 2. Each merging unit is

implemented by employing bitonic sorting network [8]. As

highlighted in Fig. 4, the merging units are not included in the

critical path, because they work in parallel to the tree

expansion.

B. Tree-expansion with Simple Approximation of L
2
-norm

In the tree-expansion unit, calculating the PED of a new

candidate expanded from CurrentBest requires interference

cancellation and norm computation as expressed in (9) and (10).

The calculation of L
2
-norm in ML detection requires high

computational complexity because it has square operations.

Some previous works have studied the use of other simple

norms such as L
1
-norm or L∞-norm [7][9][10] to reduce the

computational complexity at the cost of degrading the error

performance.

In the MIMO detection, we deal with symbols corrupted by

noise. To achieve an efficient implementation, in this case, it is

more desirable to approximate the square operation as long as

the monotonic property of the square operation is maintained.

The square of an m-bit unsigned number p can be calculated as

 (p[m-1]∙2
m-1

 + p[m-2] ∙2
m-2

 +…+ p[1]∙2
1
 + p[0])

2
. (13)

This can be approximated as

 p[m-1]∙2
2m-2

 + p[m-2] ∙2
2m-4

 +…+ p[1]∙2
2
 + p[0], (14)

which can be simply realized by inserting zeros between two

adjacent bits in p as follows:

 (p[m-1], 0, p[m-2], 0, …, 0, p[1], 0, p[0]). (15)

The zero insertion in (15) can be implemented by wiring

without incurring any additional gate delay. Hence, the

Tree-expansion from

the best candidate
Sort & Eviction of

the bad candidates

for the set-size

constraint.

Picking the best

candidate from the

candidate list & the

expanded list

Pre-decision of the

best candidate by

comparing PED

differences.

Candidate list

Expanded list

Which is the best candidate?

Fig. 3. Conceptual flow of the proposed algorithm based on the

pre-calculation technique.

A6

A1

…

B6

B1

…

E4

E1

whichBest

[2:0]

E2

E3

{A6,…A1}

{B6,…B1}

{E3, E1}

{E4, E2}

P
er

m
u

ta
ti

o
n

 u
n

it

A2

B2

+
+

+

M
IN

A1

A2

B1

B2

E2

E1

()2

()2

()2

()2

+
+

+
+




1
ˆ

N

n
n
i

k
n
n

n
i

n
y

r
x

r
x








x n

=
-3

x n
=

-1
x n

=
1

x n
=

3

O
rd

er
in

g
 u

n
it

x n
=

-2
x n

=
0

x n
=

2

CMP

Tree-expansion unit 001

0
0

1
0

1
0

1
0

0

010 or 100

minimum

PED

difference

selWhichBest

R

ŷ

Candidates

Detection Core

permutation

{A6′,…A1′}

{B6′,…B1′}
Merging-unit2

Merging-unit1

Fig. 4. Overall architecture of the proposed MIMO symbol detector with the

overall critical path highlighted in gray.

computational complexity to calculate the proposed

approximation of L
2
-norm is as low as those of L

1
-norm and

L∞-norm. Additionally, it is obvious that the proposed

approximate squaring is monotonic as the exact squaring is.

Therefore, we can expect that it does not degrade the error

performance noticeably.

V. EXPERIMENTAL RESULTS

Fig. 5 shows the performances of the modified Dijkstra's

algorithm proposed in Section III and those of others including

the original Dijkstra's algorithm, K-best, and so on. As shown

in Fig. 5(a), the BER performance degradation caused by the

overlapped processing is very little even compared with the

optimal result. With the same size of s that guarantees the

near-optimal performance in the original algorithm, the

performance degradation of the proposed algorithm is

negligible as shown in Fig. 5(a). If the target BER is 10
-4

, the

performance gap between the proposed algorithm and the

optimal one is only about 0.02dB in terms of SNR.

Fig. 5(b) shows the average number of visited nodes in the

decoding tree. The less number of visits leads to the higher

throughput. The average number of visits in the proposed

algorithm is comparable to that of the original Dijkstra's

algorithm, and both are much smaller than those of the DFS-SD

and K-best.

Fig. 6 shows how the performances are affected by the

approximate L
2
-norm proposed in Section IV. The performance

of the proposed approximation is comparable to that of the

exact L
2
-norm for the whole range of the SNR, and much better

than the other simple norms. Even though L∞-norm reveals the

smallest number of visits as shown in Fig. 6(b), the

performance degradation resulting from L∞-norm is somewhat

severe as shown in Fig. 6(a).

The proposed MIMO detector is implemented in a 0.18-μm

CMOS technology. The critical path delay of the proposed

design is about 5.41 ns when estimated with reflecting the

parasitic effects. Counting a 2-input NAND as one, the

equivalent gate-count of the proposed MIMO detector is about

25.1K. The proposed MIMO detector occupies 0.49 mm
2
.

The throughput of the proposed MIMO detector is estimated

with taking into account the operating frequency and the

average number of visited nodes. Since four 16-QAM symbols

are transmitted per transaction in the target system and four

nodes are visited by the tree-expansion in one cycle in the

proposed architecture, the throughput is calculated as

16 (operating frequency)

bps
(average number of visited nodes) / 4

 


   
. (16)

The throughput of the proposed MIMO detector is shown in Fig.

7, where we can see that the throughput is about 300 Mbps for a

SNR of 20 dB and about 360 Mbps for a SNR of 30 dB.

In Table I, the characteristics of the proposed MIMO

detector are compared with those of previous works. In the

proposed MIMO detector, the decoding tree is expanded in a

(a)

(b)

Fig. 5. Performance comparison for 4 x 4, 16-QAM MIMO symbol
detection: (a) BER performance, and (b) the average number of visited

nodes. The sorting in the original Dijkstra’s algorithm is not relaxed in

opposition to the proposed algorithm. The SNR per receiving antenna is
defined as Es/No, where Es means the symbol energey and No means the

noise variance.

10 15 20 25 30
10

-8

10
-6

10
-4

10
-2

10
0

SNR(E
s
 / N

o
 (dB))

B
it

 e
rr

o
r

ra
te

 (
B

E
R

)

Optimal

Original Dijkstra's algorithm (s=16)

Original Dijkstra's algorithm (s=12)

Proposed algorithm (s=16)

 K-best (K=16)

 K-best (K=12)

23.6 23.8 24 24.2

10
-4

10 15 20 25 30
0

50

100

150

200

250

300

350

400

450

SNR(E
s
 / N

o
 (dB))

A
v

er
ag

e
n

u
m

b
er

 o
f

v
is

it
ed

 n
o

d
es

DFS-SD with Schnorr-Euchner enum.[11]

Original Dijkstra's algorithm (s=16)

Proposed algorithm (s=16)

 K-best (K=16)

 K-best (K=12)

(a)

(b)

Fig. 6. Performance of the proposed approximate L2-norm: (a) BER

performance, and (b) the average number of the visited nodes.

10 15 20 25 30
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

SNR(E
s
 / N

o
 (dB))

B
it

 e
rr

o
r

ra
te

 (
B

E
R

)

Exact L2-norm

 L
1-norm

 L
-norm

Proposed approximate L2-norm

10 15 20 25 30
0

50

100

150

200

250

SNR(E
s
 / N

o
 (dB))

A
v

er
ag

e
n

u
m

b
er

 o
f

v
is

it
ed

 n
o

d
es

Proposed approximate L2-norm

 L
1-norm

 L
-norm

Exact L2-norm

greedy manner, the sorting and eviction is distributed, and there

is a single processing element. As a result, it can lower the

hardware complexity significantly, and has the advantage of

achieving high area efficiency as well as high throughput over

the other detectors. In addition, the proposed architecture

employs a simple approximation to reduce the computational

complexity of L
2
-norm and provide better performance than

L
1
-norm and L∞-norm.

VI. CONCLUSION

Observing the behavior of the original Dijkstra's algorithm,

we have proposed a new MIMO detection algorithm that can

lead to high-throughput architecture and presented its efficient

implementation. The original Dijkstra's algorithm is modified

to allow computational steps in the critical path to be

overlapped as much as possible. To improve the throughput

further, the best candidate to be expanded next is pre-calculated.

Additionally, we proposed a simple approximation of L
2
-norm

to reduce the computational complexity without severe

performance degradation. A prototype MIMO detector based

on the proposed architecture was implemented in a 0.18-μm

CMOS technology. The chip integrating 25.1K equivalent

gates occupies 0.49 mm
2
 and its throughput is over 300 Mbps

for high SNR.

REFERENCES

[1] D. Tse and P. Viswanath, "Fundamentals of wireless communication,"

Cambridge University Press, 2005.

[2] M. Myllyla, M. Juntti, and J. R. Cavallaro, "Implementation aspects of list
sphere detector algorithms," in Proc. of Global Telecommunications

Conference, pp.3915-3920, Nov. 2007.

[3] S. Bäro, J. Hagenauer, and M. Witzke, "Iterative detection of MIMO

transmission using a list-sequential (LISS) detector," in Proc. of

International Conference on Communications, vol.4, pp.2653-2657, May
2003.

[4] B. Hassibi and H. Vikalo, "On the sphere-decoding algorithm I. expected
complexity," IEEE Trans. on Signal Processing, vol.53, no.8,

pp.2806-2818, Aug. 2005.

[5] K.W. Wong, C.Y. Tsui, Cheng. Roger S.K. Cheng, and W. H. Mow, "A
VLSI architecture of a K-best lattice decoding algorithm for MIMO

channels," in Proc. of International Symposium on Circuits and Systems,

vol.3, pp.273-276, May 2002.
[6] S. Chen, T. Zhang, and Y. Xin, "Relaxed K-best MIMO signal detector

design and VLSI implementation," IEEE Trans. on Very Large Scale

Integration Systems, vol.15, no.3, pp.328-337, Mar. 2007.
[7] M. Wenk, M. Zellweger, A. Burg, N. Felber, and W. Fichtner, "K-best

MIMO detection VLSI architectures achieving up to 424Mbps," in Proc.

of International Symposium on Circuits and Systems, pp.1151-1154, May
2006.

[8] K. E. Batcher, "Sorting networks and their applications," in Proc. of the

AFIPS Spring Joint Computing Conference, vol.32, pp.307-314, 1968.
[9] Burg. A., Borgmann. M., Wenk. M., Zellweger. M., Fichtner. W., and

Bolcskei. H., "VLSI implementation of MIMO detection using the sphere

decoding algorithm," IEEE Journal of Solid-State Circuits, vol.40, no.7,
pp.1566-1577, July 2005.

[10] D. Seethaler and H. Bolcskei, "Infinity-norm sphere-decoding," in Proc.

of International Symposium on Information Theory, pp.2002-2006, July
2008.

[11] C. P. Schnorr and M. Euchner, "Lattice basis reduction: improved

practical algorithms and solving subset sum problems," Math.
Programming, vol.66, no.2, pp.181-191, Sep. 1994.

[12] Z. Guo and P. Nilsson, "Algorithm and implementation of the K-best

sphere decoding for MIMO detection," IEEE Journal of Selected Areas in
Communications, vol.24, no.3, pp.491-503, March 2006.

Fig. 7. Throughput and layout of the proposed MIMO symbol detector.

10 15 20 25 30
50

100

150

200

250

300

350

400

SNR(E
s
 / N

o
 (dB))

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

TABLE I. COMPARISONS WITH PREVIOUS WORKS

Architecture [7] [12] [9] Proposed

Configuration
4x4

16-QAM

4x4

16-QAM

4x4

16-QAM

4x4

16-QAM

4x4

16-QAM

Algorithm
K-Best

(K=5)

K-Best SE a

(K=5)
DFS-SD DFS-SD

Modified

Dijkstra’s

algorithm

Norm

calculation
L1-norm L2-norm L2-norm L∞-norm

Proposed

approx. L2-norm

Technology
0.25-μm

CMOS

0.35-μm

CMOS

0.25-μm

CMOS

0.25-μm

CMOS

0.18-μm

CMOS

Gate count 68K 91K 117K 50K 25.1K

Area N.A. 5.76 mm2 N.A. N.A. 0.49 mm2

Frequency 132MHz 100MHz 51MHz 73MHz 181MHz

Throughput 424Mbps 53.3Mbps
73Mbps

(@SNR=20dB)

169Mbps

(@SNR=20dB)

302Mbps

(@SNR=20dB)
>>>>>>>>>>>>>>>>>>>>>a K-Best SE algorithm is a K-best algorithm modified by using the Schnorr-Euchner searching strategy [12].

