
 

 

Abstract— This paper presents a VLSI implementation of a 

high-throughput and area-efficient MIMO detector. We propose 

a modified Dijkstra's algorithm and a pre-calculation technique to 

improve the throughput by allowing overlapped processing. In 

addition, we propose a simple approximation of L2-norm to 

reduce the computational complexity without degrading the error 

performance noticeably. A MIMO detector based on the proposed 

algorithm is implemented using a 0.18-μm CMOS technology, 

which occupies 0.49 mm2 with 25.1K equivalent gates and shows a 

throughput of over 300 Mbps. 

 
Index Terms— Multi-input multi-output, maximum-likelihood 

(ML) detection, sphere decoding, very large scale integration 

(VLSI), wireless communications. 

 

I. INTRODUCTION 

The MIMO communication system is associated with 

multiple spatial streams to extend channel capacity [1]. The 

large channel capacity can be used to boost the data rate, but 

much complicated signal processing is inevitably required 

because of the multiplicity of spatial streams as well as the 

interferences among them. 

Aiming at a high-throughput, area-efficient VLSI 

architecture, this paper proposes new methods to detect the 

MIMO symbols, and presents an implementation based on 

them. The proposed MIMO detector is the first realization of 

the sphere decoder (SD) based on Dijkstra's algorithm. To 

enhance the throughput without incurring a significant 

degradation of the error performance, the original Dijkstra's 

algorithm is modified to enable overlapped processing. To 

improve the throughput further, we pre-calculate the best 

candidate to be expanded in the next iteration. Due to the 

algorithmic modification as well as the pre-calculation, the 

critical path delay of the proposed architecture is reduced to the 

delay of tree expansion. In addition, we propose a simple 

approximation of L
2
-norm to reduce both the hardware 

complexity and the critical path delay. The proposed MIMO 

detector is implemented in a 0.18-μm CMOS technology, 

which occupies 0.49 mm
2
 and shows a throughput of over 300 

Mbps in the environment of high signal-to-noise ratio (SNR). 

The rest of the paper is organized as follows. Section II 

describes the system model and the original Dijkstra's 

algorithm for the MIMO detection. Section III proposes the 

modified Dijkstra's algorithm and the pre-calculation technique. 

Section IV presents the architecture of the proposed MIMO 

detector with a simple approximation of L
2
-norm. In Section V, 

 
 

the performance of the proposed algorithm is evaluated, and the 

implementation results of the proposed MIMO detector is 

compared with the previous works. Finally, concluding 

remarks are made in Section VI. 

II. MIMO DETECTION 

A. System Model 

Let us consider a NT  NR MIMO communication system 

that employs NT transmitting antennas and NR receiving 

antennas. The corresponding baseband-equivalent system can 

be modeled as 

 yc = Hc∙xc + nc, (1) 

where yc is the NR  1 received symbol vector, Hc is the NR 
NT channel matrix, xc is the NT  1 transmitted symbol vector, 

and nc is the NR  1 additive noise vector. Each symbol in xc is 

drawn from a constellation. (1) can be decomposed into the real 

domain as 

 y = H∙x + n. (2) 

In (2), H, y, x, and n are defined as 
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where Re(v) and Im(v) denote the real and the imaginary part of 

v, respectively. In this paper, we will take into account the real- 

valued model expressed in (2), assuming that N = 2NT = 2NR w- 

ithout loss of generality. 

B. MIMO Detection Using Dijkstra's Algorithm 

Given y and H, the maximum-likelihood (ML) MIMO 

detection is to find the optimal x such that 

 
2
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x O

y H x , (7) 

where O is the constellation in the real-valued model. In 

16-QAM, for example, O = {-3, -1, +1, +3}. By applying the 

QR-decomposition to H, (7) can be simplified to 
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y Q R x y R x , (8) 

where Q is an orthogonal matrix, R is an upper triangular 

matrix, and ŷ is Q
T
y. In the optimal solution in (8), the cost 

function is proportional to the square of Euclidean distance, 

||ŷ-Rx||
2
, which can be recursively calculated as 
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where ŷn is the n-th element of ŷ, rij is the (i, j)-th element of R, 

xi is the i-th element of x, and PEDn is the partial Euclidean 

distance (PED) calculated at the n-th layer. Starting from 

PEDN+1=0, (10) is recursively calculated until it reaches the 

final cost, PED1. Note that PEDn is always not less than PEDn+1 

because the second term on the right side in (10) is 

non-negative. 

After constructing a decoding tree where every node except 

the root corresponds to a symbol in the symbol vector, the 

symbol detection can be regarded as a tree search problem. 

Dijkstra's algorithm to find the shortest path in a graph can be 

applied to the MIMO detection [2][3]. Fig. 1(a) shows the 

conceptual flow of the algorithm, where a candidate associated 

with the best metric is selected in a greedy manner and it is 

expanded into the lower layer. When the algorithm is applied to 

the MIMO detection, each candidate corresponds to a node in 

the decoding tree, and its metric is the PED. The detailed 

algorithm is described below, and an example of the MIMO 

detection based on this algorithm is shown in Fig. 1(b). 

1) C is the candidate set, and its size, |C|, is constrained to s. 

Initially, C contains only the root node of the decoding tree 

and its PED is set to 0. 

2) CurrentBest←MinPED(C), where MinPED(C) selects the 

candidate having the smallest PED in C. If CurrentBest is in 

the lowest layer, stop the algorithm. 

3) Children←TreeExpand(CurrentBest), where TreeExpa- 

nd(CurrentBest) is the tree-expansion from CurrentBest 

according to (9) and (10). The size of Children is |O|. 

4) C←Evict((C-{CurrentBest})  Children, s) where Evi- 

ct(A, s) removes bad candidates from A if |A|>s. Go to 2). 

To generate the optimal solution, the original Dijkstra's 

algorithm has no constraint of |C|, which means s can be infinite. 

However, s should be constrained in order to make the 

hardware implementation feasible, and the performance is 

reported to be near-optimal if s is moderately large [2][3]. In 

contrast to the general SD [4], this algorithm does not need any 

enumeration to determine the visiting order of sub-trees. In 

terms of the number of visited nodes, this algorithm shows 

much lower complexity [2] than depth-first search (DFS) SD or 

K-best [5], meaning that it is more suitable for achieving the 

high-throughput. However, there are little studies on the 

efficient realization of this algorithm. 

III. PROPOSED ALGORITHM 

A. Modified Dijkstra's Algorithm for Overlapped Processing 

The original algorithm introduced in Section II is iterative, 

and each of the iteration consists of the three basic steps as 

shown in Fig. 1(a). In the first and third steps, we need to sort 

the candidate set or to do minimum/maximum operations. 

Additionally, as the eviction of the bad candidate is performed 

for the union of the previous candidate set and the new 

candidates generated by the tree-expansion, we cannot perform 

the tree-expansion in parallel with the eviction. To achieve a 

high-throughput, therefore, we need to develop a deep pipeline 

architecture that necessitates a large number of pipeline 

registers to store the intermediate results and the candidates. In 

addition, the deep pipeline lengthens the detection latency. 

Observing the eviction process of the bad candidates in the 

original algorithm, we can see that there is only a little 

difference between two lists of surviving candidates obtained 

by performing the eviction process before and after the 

tree-expansion. In other words, the surviving candidates in 

Evict((C-{CurrentBest})  Children, s) are similar to those in 

Evict((C-{CurrentBest}), s-|O|). Let us suppose a candidate 

that is not evicted for the former eviction process but evicted for 

the latter eviction process. It is very unlikely for the candidate 

to survive as a final solution. This algorithmic behavior 

becomes clear if s is large enough to guarantee the near-optimal 

performance. 

Motivated by this observation, the last two steps in Fig. 1(a) 

are performed in a completely overlapped manner in the 

proposed algorithm. In other words, the eviction is processed in 

parallel with the tree expansion. In the proposed algorithm, the 

candidates are classified into two groups each of which is kept 

in a separate list. One list called the expanded list has only the 

candidates generated by the tree-expansion in the previous 

iteration, and the other list called the candidate list contains the 

surviving candidates. Fig. 2 shows the conceptual flow of the 

proposed algorithm. The current best candidate is first selected 
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Fig. 1. (a) Conceptual flow of the original Dijkstra’s algorithm for MIMO 

symbol detection. (b) A detection example where the candidate set size is 

constrained to 4 and the number of a node represents the PED of the node. 
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Fig. 2. Conceptual flow of the proposed algorithm. 



 

among the candidates in the two lists. The candidate list is 

updated by merging the expanded list and performing eviction. 

Note that the expanded list was generated by the tree-expansion 

of the previous iteration. Hence, the tree-expansion from the 

current best candidate can be performed in parallel with the 

sorting and eviction. 

To reduce the sorting complexity, the strictness of sorting 

can be relaxed by employing the distributed sorting technique 

proposed in [6]. The following is the modified Dijkstra's 

algorithm proposed for the MIMO detection, where the 

candidate list is again divided into two sub-lists, A and B: 

1) A and B are two candidate lists whose sizes are constrained 

to (s-|O|)/2. E is the expanded list having the candidates 

generated by the tree-expansion in the very previous 

iteration. The candidates in these lists are sorted according to 

the PED, i.e., Ai.PED ≤ Aj.PED, Bi.PED ≤ Bj.PED, and 

Ei.PED≤Ej.PED for 1≤i≤j, where Ai is the i-th candidate in 

A, and Ai.PED is the PED of Ai. Initially, A=B=Ø , and E 

contains only the root node whose PED is set to 0. 

2) CurrentBest←MinPED({A1,B1,E1}). In this computation, 

A1 is not considered if A = Ø . Similarly, B1 is not considered 

if B = Ø . If CurrentBest is in the lowest layer, stop the 

algorithm.  

3) A←SortEvict(A {E1,E3,…} - {CurrentBest}, (s - |O|) / 2). 

B←SortEvict(B {E2,E4, … } - {CurrentBest}, (s - |O|) / 2). 

SortEvict(X, s) is to sort X by the PED and to evict the bad 

candidates if |X|>s. 

4) E←TreeExpandSort(CurrentBest), where TreeExpandSo- 

rt(CurrentBest) is the same as TreeExpand(CurrentBest) 

except that the resulting E={E1,…E|O|} is sorted by the PED. 

Go to 2). 

TreeExpandSort(∙) in the above algorithm produces the 

sorted list of the expanded candidates. In the real-valued 

MIMO system, the sorting can be simply performed by 

comparing bn with rnn [7]. This can be performed before the 

addition of the PED increment in (10), so the delay additionally 

needed to sort the expanded candidates is negligible. 

In 3) of the above algorithm, the candidates in E are 

distributed into two candidate lists for SortEvict operations. 

Note that E is divided into {E1, E3, ...} and {E2, E4, ...} rather 

than {E1, ...., E|O|/2} and {E|O|/2+1, ..., E|O|}. This arrangement 

prevents good candidates from being clustered in one of the two 

lists, and is effective in relieving the performance degradation 

caused by the distributed sorting. 

SortEvict operation that merges two sorted lists into another 

sorted one requires less computation than the usual sorting. In 

the proposed algorithm, its complexity is further lowered by 

reducing the number of elements to be sorted. Two SortEvict 

operations each of which merges two sorted lists whose sizes 

are (s-|O|)/2 and |O|/2 are required in the proposed algorithm, 

whereas the original algorithm requires one sorting operation to 

merge two sets whose sizes are s and |O|. Though the 

distributed sorting can be employed in the original algorithm, 

two sorting operations are required to merge two sets whose 

sizes are s/2 and |O|/2. 

The overlapped processing of eviction and tree expansion 

allows us to increase the operating frequency without 

employing a deep-pipeline architecture. As the overlapped 

processing is enabled by modifying the original algorithm, it 

does not induce any additional computations. However, the 

error performance may be degraded a little, because the 

proposed algorithm modifies the original algorithm to overlap 

the processing. Experimental results show that the performance 

degradation is negligible if s is as large as 16, as will be 

presented in Section V. 

B. Pre-decision of the Best Candidate by Difference 

Comparisons 

By using the algorithm proposed in the previous subsection, 

each iteration can be composed with two steps depicted in Fig. 

2. The first step picks the best candidate, which was formally 

expressed as CurrentBest←MinPED({A1,B1,E1}), where A1, B1, 

and E1 are the best candidates in the sorted lists of A, B, and E, 

respectively. This step can be achieved by simple comparisons, 

but cannot be parallelized with the following step, because the 

next step is dependent on the choice of the current best 

candidate, CurrentBest. 

We can pre-calculate the comparisons to decide the next best 

candidate, NextBest, which will be expanded in the next 

iteration. Considering the current candidates and the expanded 

candidates generated by the tree-expansion, we can pre-decide 

NextBest as follows: 
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, (11) 

where P1 is the best child expanded from CurrentBest. Let 

MinPEDdiff(X,C) represent the candidate in X that has the 

smallest PED difference from C. In other words, if 

Y=MinPEDdiff(X,C), Y is closest to C in terms of PED among 

all the candidates in X. If C.PED is not greater than the PED of 

every candidate in X, MinPEDdiff(X,C) is equivalent to 

MinPED(X). As CurrentBest is the best candidate in the current 

candidate lists, it is clear that the PED of CurrentBest is not 

greater than those of A1, A2, B1, B2, E1, and E2. As the new 

candidates are generated by expanding CurrentBest and the 

PED increases monotonically in (10), the PED of CurrentBest 

is not greater than that of P1, either. Therefore, the condition 

holds if C is CurrentBest, which means that we can replace 

MinPED({V, W, Y, Z}) in (11) with MinPEDdiff({V, W, Y, Z}, 

CurrentBest), where {V, W, Y, Z} corresponds to one of {A2, B1, 

E1, P1}, {A1, B2, E1, P1}, and {A1, B1, E2, P1} according to the 

case. Additionally, MinPEDdiff({V, W, Y, Z}, CurrentBest) can 

be calculated as 

 MinPEDdiff({MinPEDdiff(a{V,W,Y},aCurrentBesta),aZ},aaaaaa

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaCurrentBest). (12) 

As Z in (12) is generated by expanding CurrentBest, the PED 

difference between CurrentBest and Z is equal to the PED 

increment corresponding to the second term in the right hand 

side of (10). Note that the PED increment is available before 

finishing the tree-expansion, and MinPEDdiff({V,W,Y}, 

CurrentBest) can be calculated in parallel with the calculation 



 

of PED increment. Therefore, the pre-decision of NextBest can 

be performed in parallel with the tree-expansion without 

incurring any additional delay. 

Fig. 3 shows the proposed algorithm associated with the 

pre-decision of the next best candidate. In this algorithm, 

picking the best candidate is just selecting the candidate 

indicated by the pre-decision calculated in the previous 

iteration. As a result, we can effectively eliminate the delay of 

the comparison needed to select CurrentBest at the cost of a 

little additional computation needed to compare the PED 

difference instead of the PED itself. 

IV. PROPOSED MIMO DETECTOR 

This section presents the architecture of a MIMO detector 

developed based on the algorithms proposed in the previous 

section. The architecture aims at 4  4, 16-QAM MIMO 

systems. As we are taking into account the system expressed in 

(2), N = 8 in this case. To further reduce the computational 

complexity without sacrificing the performance, we propose a 

simple approximation of L
2
-norm in the tree-expansion. 

A. Overall Architecture 

The overall architecture of the proposed MIMO detector is 

depicted in Fig. 4. The major component is the detection core 

that performs the iterative algorithm proposed in the previous 

section. In each cycle, it produces new candidates. As shown in 

Fig. 4, the candidates are kept in two sorted lists of candidates, 

A={A1,A2,…A6}, B={B1,B2,…B6}, and a sorted list of expanded 

candidates, E={E1,E2,E3,E4}. The best candidate to be 

expanded is selected by the whichBest signal calculated in the 

previous iteration. The tree-expansion unit expands the 

decoding tree from the current best candidate, and the 

permutation unit simply arranges the expanded candidates 

according to the permutation vector calculated by the ordering 

unit. The PED differences between the current best candidate 

and the other candidates which can be expanded in the next 

iteration are calculated in parallel with the tree-expansion, and 

the whichBest signal is calculated by comparing the minimum 

PED difference and the minimum PED increment of the 

expanded candidates. 

Two merging units are required for the SortEvict operations, 

each of which produces a sorted list of size 6 by merging two 

sorted lists whose sizes are 6 and 2. Each merging unit is 

implemented by employing bitonic sorting network [8]. As 

highlighted in Fig. 4, the merging units are not included in the 

critical path, because they work in parallel to the tree 

expansion. 

B. Tree-expansion with Simple Approximation of L
2
-norm 

In the tree-expansion unit, calculating the PED of a new 

candidate expanded from CurrentBest requires interference 

cancellation and norm computation as expressed in (9) and (10). 

The calculation of L
2
-norm in ML detection requires high 

computational complexity because it has square operations. 

Some previous works have studied the use of other simple 

norms such as L
1
-norm or L∞-norm [7][9][10] to reduce the 

computational complexity at the cost of degrading the error 

performance. 

In the MIMO detection, we deal with symbols corrupted by 

noise. To achieve an efficient implementation, in this case, it is 

more desirable to approximate the square operation as long as 

the monotonic property of the square operation is maintained. 

The square of an m-bit unsigned number p can be calculated as 

 (p[m-1]∙2
m-1

 + p[m-2] ∙2
m-2

 +…+ p[1]∙2
1
 + p[0])

2
. (13) 

This can be approximated as 

 p[m-1]∙2
2m-2

 + p[m-2] ∙2
2m-4

 +…+ p[1]∙2
2
 + p[0], (14) 

which can be simply realized by inserting zeros between two 

adjacent bits in p as follows: 

 (p[m-1], 0, p[m-2], 0, …, 0, p[1], 0, p[0]).  (15) 

The zero insertion in (15) can be implemented by wiring 

without incurring any additional gate delay. Hence, the 
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Fig. 3. Conceptual flow of the proposed algorithm based on the 

pre-calculation technique. 
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computational complexity to calculate the proposed 

approximation of L
2
-norm is as low as those of L

1
-norm and 

L∞-norm. Additionally, it is obvious that the proposed 

approximate squaring is monotonic as the exact squaring is. 

Therefore, we can expect that it does not degrade the error 

performance noticeably. 

V. EXPERIMENTAL RESULTS 

Fig. 5 shows the performances of the modified Dijkstra's 

algorithm proposed in Section III and those of others including 

the original Dijkstra's algorithm, K-best, and so on. As shown 

in Fig. 5(a), the BER performance degradation caused by the 

overlapped processing is very little even compared with the 

optimal result. With the same size of s that guarantees the 

near-optimal performance in the original algorithm, the 

performance degradation of the proposed algorithm is 

negligible as shown in Fig. 5(a). If the target BER is 10
-4

, the 

performance gap between the proposed algorithm and the 

optimal one is only about 0.02dB in terms of SNR. 

Fig. 5(b) shows the average number of visited nodes in the 

decoding tree. The less number of visits leads to the higher 

throughput. The average number of visits in the proposed 

algorithm is comparable to that of the original Dijkstra's 

algorithm, and both are much smaller than those of the DFS-SD 

and K-best. 

Fig. 6 shows how the performances are affected by the 

approximate L
2
-norm proposed in Section IV. The performance 

of the proposed approximation is comparable to that of the 

exact L
2
-norm for the whole range of the SNR, and much better 

than the other simple norms. Even though L∞-norm reveals the 

smallest number of visits as shown in Fig. 6(b), the 

performance degradation resulting from L∞-norm is somewhat 

severe as shown in Fig. 6(a).  

The proposed MIMO detector is implemented in a 0.18-μm 

CMOS technology. The critical path delay of the proposed 

design is about 5.41 ns when estimated with reflecting the 

parasitic effects. Counting a 2-input NAND as one, the 

equivalent gate-count of the proposed MIMO detector is about 

25.1K. The proposed MIMO detector occupies 0.49 mm
2
. 

The throughput of the proposed MIMO detector is estimated 

with taking into account the operating frequency and the 

average number of visited nodes. Since four 16-QAM symbols 

are transmitted per transaction in the target system and four 

nodes are visited by the tree-expansion in one cycle in the 

proposed architecture, the throughput is calculated as 

 
16 (operating frequency)

bps
(average number of visited nodes) / 4

 


   
. (16) 

The throughput of the proposed MIMO detector is shown in Fig. 

7, where we can see that the throughput is about 300 Mbps for a 

SNR of 20 dB and about 360 Mbps for a SNR of 30 dB. 

In Table I, the characteristics of the proposed MIMO 

detector are compared with those of previous works. In the 

proposed MIMO detector, the decoding tree is expanded in a 

 
(a) 

 
(b) 

Fig. 5. Performance comparison for 4 x 4, 16-QAM MIMO symbol 
detection: (a) BER performance, and (b) the average number of visited 

nodes. The sorting in the original Dijkstra’s algorithm is not relaxed in 

opposition to the proposed algorithm. The SNR per receiving antenna is 
defined as Es/No, where Es means the symbol energey and No means the 

noise variance. 
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Fig. 6. Performance of the proposed approximate L2-norm: (a) BER 

performance, and (b) the average number of the visited nodes. 
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greedy manner, the sorting and eviction is distributed, and there 

is a single processing element. As a result, it can lower the 

hardware complexity significantly, and has the advantage of 

achieving high area efficiency as well as high throughput over 

the other detectors. In addition, the proposed architecture 

employs a simple approximation to reduce the computational 

complexity of L
2
-norm and provide better performance than 

L
1
-norm and L∞-norm. 

VI. CONCLUSION 

Observing the behavior of the original Dijkstra's algorithm, 

we have proposed a new MIMO detection algorithm that can 

lead to high-throughput architecture and presented its efficient 

implementation. The original Dijkstra's algorithm is modified 

to allow computational steps in the critical path to be 

overlapped as much as possible. To improve the throughput 

further, the best candidate to be expanded next is pre-calculated. 

Additionally, we proposed a simple approximation of L
2
-norm 

to reduce the computational complexity without severe 

performance degradation. A prototype MIMO detector based 

on the proposed architecture was implemented in a 0.18-μm 

CMOS technology. The chip integrating 25.1K equivalent 

gates occupies 0.49 mm
2
 and its throughput is over 300 Mbps 

for high SNR. 
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Fig. 7. Throughput and layout of the proposed MIMO symbol detector. 
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TABLE I. COMPARISONS WITH PREVIOUS WORKS 

Architecture [7] [12] [9] Proposed 

Configuration 
4x4 

16-QAM 

4x4 

16-QAM 

4x4 

16-QAM 

4x4 

16-QAM 

4x4 

16-QAM 

Algorithm 
K-Best 

(K=5) 

K-Best SE a 

(K=5) 
DFS-SD DFS-SD 

Modified 

Dijkstra’s 

algorithm 

Norm 

calculation 
L1-norm L2-norm L2-norm L∞-norm 

Proposed 

approx. L2-norm 

Technology 
0.25-μm 

CMOS 

0.35-μm 

CMOS 

0.25-μm 

CMOS 

0.25-μm 

CMOS 

0.18-μm 

CMOS 

Gate count 68K 91K 117K 50K 25.1K 

Area N.A. 5.76 mm2 N.A. N.A. 0.49 mm2 

Frequency 132MHz 100MHz 51MHz 73MHz 181MHz 

Throughput 424Mbps 53.3Mbps 
73Mbps 

(@SNR=20dB) 

169Mbps 

(@SNR=20dB) 

302Mbps 

(@SNR=20dB) 
>>>>>>>>>>>>>>>>>>>>>a K-Best SE algorithm is a K-best algorithm modified by using the Schnorr-Euchner searching strategy [12]. 

 


