
A Scalable SIMD Digital Signal Processor for High Quality
Multifunctional Printer Systems

Hyeong-Ju Kanga, Yongwoo Choia, Kimo Kima, In-Cheol Park*a,
Jung-Wook Kimb, Eul-Hwan Leeb, Goo-Soo Gahangb

aKorea Advanced Institute of Science and Technology 373-1, Guseong-dong, Yuseong-gu, Daejeon,
Republic of Korea

bDigital Printing Division, Samsung Electronics 416, Maetan-dong, Yeongtong-gu, Suwon,
Republic of Korea

ABSTRACT

This paper describes a high-performance scalable SIMD digital signal processor (DSP) developed for multifunctional
printer systems. The DSP supports a variable number of datapaths to cover a wide range of performance and maintain a
RISC-like pipeline structure. Many special instructions suitable for image processing algorithms are included in the
DSP. Quad/dual instructions are introduced for 8-bit or 16-bit data, and bit-field extraction/insertion instructions are
supported to process various data types. Conditional instructions are supported to deal with complex relative conditions
efficiently. In addition, an intelligent DMA block is integrated to align data in the course of data reading. Experimental
results show that the proposed DSP outperforms a high-end printer-system DSP by at least two times.

Keywords: Digital signal processor, DSP, image processing, multifunctional printer system

1. INTRODUCTION

Today’s printer systems are evolving to complex ones covering a lot of functions that were separately implemented in
the past, such as facsimiles, copiers, and scanners, as the functions can share many image processing algorithms such as
color correction, contrast control, image enhancement, and so on1-5. To cope with frequent changes in the processing
algorithms, software implementation on a powerful digital signal processor (DSP) is preferred to the traditional
hardware implementation.

A DSP is a micro-processor that has features suitable for digital signal processing6. Since a digital signal processing
algorithm requires many filter-like operations, hx, a DSP usually has a single- or double-cycle multiplication-and-
accumulate (MAC) unit. In addition, a DSP has a separated data memory bus because digital signal processing
algorithms are data-intensive and a data memory is frequently accessed. Furthermore, a DSP has simultaneous
instructions, where an ALU operation and a memory access are performed at the same time.

Since recent image processing algorithms process enormous amount of data, a DSP is evolved to have a parallel
architecture6. For example, the TMS320C6xxx architecture of Texas Instruments can perform 8 instructions in parallel.
It has two datapaths, each of which contains two arithmetic units, one multiplier, and one memory access unit7. Many of
DSP companies, such as Analog Devices, Motorola, and Hitachi, also develop their own DSP architectures that have
many data processing units8-10.

Such parallel DSPs, however, have a property that is not suitable for image processing. The DSPs usually have very-
long-instruction-word (VLIW) architectures, where operations in an instruction should not have data dependency. Since
an image processing algorithm usually performs successive operations on a piece of data, it is difficult to make enough
long instructions. Moreover, the VLIW architecture requires a complex control unit, which can be a serious overhead.

Some of the DSPs are not good at processing various formats of image data, either. A piece of data can be of
conventional length like 8 bits, 16 bits, or 32 bits, and unconventional length like 10 bits, 12 bits, and so on. The DSPs

* icpark@ee.kaist.ac.kr; phone 82 42 869 3461; fax 82 42 869 4410

have a few special instructions to process conventional-length data, but has few instructions for unconventional-length
data. In addition, a pixel usually consists of 3 pieces, red, green, and blue, which format is not desired by the usual
DSPs.

In this paper, we present a high-performance DSP, named as PrimDSP, specialized for multi-functional printer
systems, which has many features related to image processing algorithms. PrimDSP employing the RISC-like five-stage
pipeline structure is based on a single-instruction-multiple-data (SIMD) architecture11 to apply the same operation to a
bundle of image data and can have up to 16 datapaths, each of which is associated with a corresponding local data
memory. The number of datapaths is scalable according to the requirement of applications.

Various quad/dual instructions are supported to pack four data of byte length or two data of half-word length into one
word length form. As image processing algorithms usually apply the same operation to all data, such instructions lead to
less code size and faster processing. To process image data that have various bit-lengths, PrimDSP is able to perform
bit-field extraction/insertion before and after ALU operations. PrimDSP supports up to 4 extraction/insertion patterns at
the same time, and one of them can be specified in the related instruction.

The DMA in PrimDSP has intelligent functions. The conventional DMA only transfers data between a local memory
and an external memory. In addition to the conventional DMA function, the proposed DMA can transform the image
data structure for easy image processing. If a pixel data size is 3 bytes, the pixel boundary is not aligned to the word
boundary. To process the pixel data in image processing algorithms, the misaligned data should be aligned to the word
boundary, leading to much overhead in software. The proposed DMA supports the alignment function for the data
requested from PrimDSP, because the function can be implemented with a little hardware.

To compare the performance of PrimDSP with a commercial SIMD DSP, three image processing algorithms are
implemented in assembly languages, and the average number of cycles required to process one pixel in the commercial
SIMD DSP and PrimDSP is measured. The experiments show that PrimDSP consumes only half the number of cycles
compared to the other DSP.

This paper is organized as follows. The base architecture of PrimDSP is presented in Section 2 and the instruction
features are explained in Section 3. Section 4 describes PrimDSP’s DMA functions and Section 5 shows the
experimental and synthesis results. Concluding remarks are made in Section 6.

2. BASE ARCHITECTURE

PrimDSP’s architecture is developed to achieve high-performance in image processing algorithms. It employs a SIMD
architecture and a RISC-like five-stage pipeline. Each datapath has an ALU, a MAC unit, a register file with 32 general
purpose registers, two extractors, and one inserter. PrimDSP also contains a local data memory and a program cache.

2.1. SIMD Architecture
PrimDSP is based on the SIMD architecture as shown in Fig. 1, as a group of image data is processed in the same way
in many image processing algorithms. A single datapath processor cannot meet the performance specification of today’s
printer systems. Another parallel architecture, the VLIW architecture, allows different operations on each datapath,
which increases control part overhead. Moreover, to fully utilize the parallelism of the VLIW architecture, the
operations to be executed in a cycle should not have any dependency among them, which rarely occurs in image
processing algorithms.

The number of datapaths in PrimDSP can be changed according to the performance requirement, as there are many
types of multifunctional printer systems requiring different performance specification. For low-performance systems,
excess datapaths increase chip area without contributing the performance. PrimDSP can support up to 16 datapaths, so it
is well suitable for a wide range of printer systems.

The local data memory is regarded as a set of sub-memories, each of which is associated to a datapath. Every
datapath can access its sub-memory at the same time. However, the data memory can be treated as one memory when a
datapath wants to access an arbitrary position of the memory.

RF RF RF RF

ALU

AGU

MAC

...

ALU

AGU

MAC

...

ALU

AGU

MAC

...

ALU

AGU

MAC

...

DP0 DP1 DP2 DPn

Fetch Unit

Decode Unit

instruction
program

address

data

address
data

Program Cache

Program Loader

Address

Register

Local Data Memory

DMA

Control Unit

PrimDSP

Core

Figure 1: The SIMD architecture of PrimDSP.

IF ID EX MEM WB

write back to register file

data memory read/write

ALU operation, address generation

instruction decode, register file read

instruction fetch

IF ID EXT/AG EX/MEM INS/WB

insertion, write back to register file

ALU operation, data memory read/write

extraction, address generation

instruction decode, register file read

instruction fetch

(a)

(b)

Figure 2: (a) The typical RISC pipeline structure and (b) PrimDSP pipeline structure.

2.2. Pipeline Structure
PrimDSP follows the traditional RISC pipeline structure with five stages, IF-ID-EX-MEM-WB as shown in Fig. 2a. An
instruction is fetched from a program memory at IF stage and decoded at ID stage. Register values are read at ID stage,
too. An ALU operation is performed at EX stage. A data memory is accessed at MEM stage, and the result is written to
registers at WB stage. The pipeline structure, however, is somewhat modified in PrimDSP for image-processing.

To process various bit-length data, PrimDSP performs extraction/insertion operations before and after ALU
operations. If extraction/insertion operations are performed with an ALU operation, the critical path becomes very long.

Register File

Extractor 1 Extractor 2

ALU

Inserter

MAC

Datapath

Memory

Unit

(AGU)

from other DPs

from address

register

to/from data

submemory

Figure 3: Datapath structure.

Those operations, therefore, should be performed at separated stages. As EXT stage and INS stage are placed before and
after EX stage, the pipeline structure is changed to IF-ID-EXT-EX/MEM-INS/WB as shown in Fig. 2b.

In a typical RISC machine, the address for a data memory access is computed in an ALU of EX stage. In PrimDSP, as
EX stage is processed in parallel with MEM stage, the address is generated at EXT stage with a separate address
generation unit (AGU). A multiplication is performed through two stages, EXT/AG and EX/MEM, because
multiplication usually takes two times as long delay as addition.

2.3. Datapath Structure
Each datapath has a dedicated register file, several special purpose registers, two extractors, an AGU, an ALU, a MAC
unit, and an inserter as shown in Fig. 3. The extractor extracts a part of data read from the register file. The extracted bit-
field is processed by the ALU, and the inserter inserts a part of the calculated data into a register. The AGU generates
the address for a data memory access, and the MAC unit multiplies the source operands and accumulates the result into
the accumulator.

A register file contains 32 general purpose registers each of which is 32bits. There are two read ports and two write
ports at the register file. In addition to the register file, a datapath also includes an accumulate register, an insertion
register, 4 increment registers, and a condition register. Some registers are common for all datapaths to achieve easy
data transfer among datapaths, which include 16 address registers, 12 increment registers, and many special purpose
registers.

2.4. Other Features
Beside the above features, there are features included to improve performance in PrimDSP. An intensive forwarding
scheme is used, and DSP-like instructions are adopted to handle loops, such as a decrement and branch instruction and a
zero overhead loop instruction. A DMA unit is employed to enable data transfer between the local data memory and the
external memory without consuming the processing power of PrimDSP, and a program cache is integrated to speed up
the program accesses. The program cache can operate as a downloadable memory.

3. INSTRUCTION FEATURES

3.1. Parallel and Single-Datapath Instructions
An instruction that is performed in every datapath at the same time is called a parallel instruction. These instructions
include typical ALU instructions, multiplication/MAC instructions, load/store instructions, and extraction/insertion
ALU instructions, and have two source operands and one destination operand. One of the two source operands can be an
immediate constant.

Special ALU instructions are minimum and maximum instructions that select the smaller and the larger of the two
source operands, respectively. These operations are often used to process the median filtering. If the instructions are not
supported, the operations should be implemented with compare and branch instructions, which takes a number of
instructions and cycles. PrimDSP, however, performs the operations in only one cycle by using the minimum and
maximum instructions.

Instructions being performed in only one datapath are called single-datapath instructions. An instruction in this
category has a field specifying the datapath to be executed. Typical ALU operations can be included in the single-
datapath instructions, and there are two special move instructions. One of them broadcasts a register value of a datapath
to a register of all datapaths. The other transfers a register value of a datapath to a register of another datapath. The
single-datapath instructions also contain multiplication/MAC instructions and load/store instructions

3.2. Simultaneous Instructions
Simultaneous instructions perform an ALU operation in parallel with a load operation. This is possible because ALU
and load operations use different units. The source operands of an ALU operation are read from the register file, and the
base address of a load instruction is read from address registers. The ALU operation is performed in an ALU, and the
load operation in an AGU. The results of ALU and load operations can be written to the register file at the same time as
the register file has two write ports.

Because of limited instruction length, there are restrictions in specifying the operands in simultaneous instructions.
The ALU operation has only two operands, and the result of the ALU operation is written into one of the source
operands. The load operation supports only post-increment addressing.

3.3. Quad/Dual Instructions
Image data are usually represented in a 8-bit or 16-bit format. To reduce memory usage, four 8-bit data or two 16-bit
data are packed in a 32-bit memory entry. In a conventional DSP, each data contained in a 32-bit entry is processed
separately. It takes a number of cycles to repeat extracting a field of data and processing it. Quad/dual instructions are
included in PrimDSP to process all the data fields contained in a 32-bit entry simultaneously.

A quad instruction processes four 8-bit data fields at a time. Some of instructions in this category are illustrated in
Fig. 4a. The quad-multiplication instruction multiplies each 8-bit data in one source operand by the corresponding 8-bit
data in the other source operand, and the quad-multiplication-and-accumulation instruction accumulates the
multiplication results. The quad-individual-multiplication instruction multiplies each 8-bit data in one source operand by
the other 32-bit source operand. The multiplication results are right adjusted to prevent overflow. The quad-addition
instruction operates in the same way as the quad-multiplication instruction except that it performs addition instead of
multiplication. If an addition result cannot be represented in 8 bits, the result is saturated. The quad-accumulation-with-
mask instruction accumulates each 8-bit data of one source operand if the corresponding bit in the other operand is set.

A dual instruction processes two 16-bit data fields simultaneously. This instruction group includes dual-
multiplication, dual-multiplication-and-accumulation, and dual-individual-multiplication. The instructions are illustrated
in Fig. 4b.

Each data field in the quad/dual format can be signed or unsigned. Four signed/unsigned patterns are saved in a
special purpose register, and a quad/dual instruction has a field to indicate one of the four patterns.

3.4. Extraction/Insertion Instructions
The size of image data can be different from the convention 8 or 16 bits to achieve compact representation. In this case,
the quad and dual instructions are not sufficient. To support the case, extraction/insertion instructions are included,
which perform extraction and insertion before and after an ALU operation as shown in Fig. 5. An ALU operation is
performed for the extracted data, and then a part of the ALU result is inserted into the insertion register. The insertion
result is written to a general purpose register and the insertion register.

To specify extraction and insertion patterns, PrimDSP supports four groups (EI groups) of pattern registers. An
extraction/insertion instruction has a field to indicate which EI group is used. An EI group consists of two extraction

A[31:24] A[23:16] A[15:8] A[7:0]

B[31:24] B[23:16] B[15:8] B[7:0]

C[31:24] C[23:16] C[15:8] C[7:0]

A[31:24] A[23:16] A[15:8] A[7:0]

A[31:24] A[23:16] A[15:8] A[7:0]

B[31:0] B[31:0] B[31:0] B[31:0]

C[31:24] C[23:16] C[15:8] C[7:0]

B[31:24] B[23:16] B[15:8] B[7:0]

C[31:0]

quad-multiplication

quad-individual-multiplication

A[31:24] A[23:16] A[15:8] A[7:0]

B[31:24] B[23:16] B[15:8] B[7:0]

C[31:24] C[23:16] C[15:8] C[7:0]

quad-addition

quad-multiplication-and-accumulation

A[31:24] A[23:16] A[15:8] A[7:0]

B[3] B[2] B[1] B[0]

C[31:0]

quad-accumulation-with-mask

A,B : source operands, C : destination operand

(a)

A[31:16] A[7:0]

B[31:16] B[7:0]

C[31:16] C[7:0]

A[31:16] A[15:0]

A[31:16] A[15:0]

B[31:0] B[31:0]

C[31:16] C[15:0]

B[31:16] B[15:0]

C[31:0]

dual-multiplication

dual-individual-multiplication

dual-multiplication-and-accumulation

(b)

Figure 4: (a) Quad instructions and (b) dual instructions.

pattern registers and an insertion pattern register. An extraction pattern register specifies extraction position, extraction
width, signed/unsigned extraction, and automatic position increment. The meaning of each field is illustrated in Fig. 6a.
The signed/unsigned extraction field indicates whether the extracted data is signed or not. The two extraction pattern
registers in an EI group specify the extraction patterns of two source operands.

An insertion pattern register consists of insertion position, insertion width, extraction position, saturation, and
automatic position increment. The function is shown in Fig. 6b. The saturation field is for the case when the ALU result
cannot be represented with the length specified in the insertion width. If the saturation field is set, a saturated value is
inserted.

Since an EI group consists of three registers, it takes three cycles to specify an extraction/insertion pattern. This
overhead can be serious when many extraction/insertion patterns are required in image processing algorithms. PrimDSP
has four virtual EI registers to reduce the overhead when typical extraction/insertion patterns are used. Image processing
algorithms usually use 8-bit or 16-bit extraction/insertion patterns that can be represented with a small number of bits. A
virtual EI register has a length enough long to specify 8-bit or 16-bit patterns and enough short to be assigned in an
instruction. If an EI register is assigned to a value A, the extraction and insertion registers in the corresponding EI group
are assigned to the pattern corresponding to A.

Extractor Extractor

ALU

source operand 1 source operand 2

ALU resultinsertion register

Inserter

Register File

Register File

ID

EXT/

AG

EX/

MEM

INS/

WB

Figure 5: An extraction/insertion instruction.

source operand

insertion register

… … …

extraction position

extraction width

… … …

extraction position

extraction width extraction width

extraction positionauto
increment

(a)

(b)

source operand

at the current extraction at the next extraction

… … …

extraction position

insertion width

… … …

insertion position

insertion width

ALU result

insertion register

at the current insertion

… … …

insertion position

insertion width insertion width

insertion positionauto
increment

… … …

extraction position

insertion width
ALU result

at the next insertion

Figure 6: (a) An extraction pattern and (b) an insertion pattern.

3.5. Conditional Execution
In some image processing algorithms, a datum is processed differently according to its value. As each datapath has
different data, each datapath operates differently. If these operations were performed separately in each datapath, the
benefit of the SIMD architecture would be lost.

PrimDSP solves the problem by introducing conditional execution. Each datapath has 20 condition bits, which are set
by an instruction comparing data values in each datapath. In addition, there are two special instructions: a conditional
execution start instruction with a condition bit specified and a conditional execution end instruction. Instructions
between the two instructions are performed in the only datapaths where the specified condition is set. Some of the

R G B R G B R G B R G B R G B R
GG B R G B R G B R G B R G B R

G BB R G B R G B R G B R G B R

pixel

32bit word

DMA

R G B R G B R G B R G B
R G B R

G

G B R G B R G B

R G B R G B R
G B

B
R G BR G B

R G B
R G B R

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

Exteranl Memory

Local Data Memory

Figure 7: An intelligent DMA function.

condition bits are set automatically by logical operation of other bits to deal with very complex cases being determined
by several data values.

4. DMA

In an external memory, image data are arranged in a way to reduce memory usage. The arrangement, however, is not
efficient for image processing algorithms. For example, let us consider a pixel consisting of 3 bytes: red, green, and
blue. In an external memory, a bundle of pixels are arranged consecutively. Therefore, the pixel boundary does not
coincide with the 32bit-word boundary that is natural in computer arithmetic operations. To process a pixel, two words
are often loaded to combine parts of the two words. These operations are inefficient if implemented in software.

The DMA of PrimDSP has an intelligent function to solve this problem. A conventional DMA just transfers data in
an external memory to a local data memory. The proposed DMA, however, changes data arrangement while transferring
them. In the above example, the DMA aligns pixel data to make the pixel boundary coincide with the word boundary as
shown in Fig. 7. When transferring data in the local data memory back to the external memory, the DMA changes data
arrangement into the original one.

The DMA has more rearrange modes than the mode mentioned above. For image processing algorithms that process
each color data separately, for example, the DMA separates three color components and stores them into separated
memory regions.

5. EXPERIMENTAL AND SYNTHESIS RESULTS

Three typical image processing algorithms are coded in assembly languages to compare the performance of PrimDSP
with a commercial high-end SIMD DSP. The contrast control algorithm calculates the luminance of each pixel and
obtains a new luminance by using different linear functions. The median saturation algorithm calculates the saturation
value of a 3x3 region and the median value. The scanner color correction algorithm calibrates the input RGB pixel data
by multiplying a 3x3 matrix.

Table 1 shows how many cycles the commercial DSP and PrimDSP take to process one pixel in each algorithm. In
the contrast control algorithm, PrimDSP takes half of the cycles that the high-end DSP does. This is because PrimDSP
does not waste cycles to rearrange image data and has powerful conditional instructions. PrimDSP is four times as
efficient as the high-end DSP in the median saturation algorithm that frequently compares two operands and selects the
larger or smaller. The minimum and maximum instructions are very effective for the operation. PrimDSP also performs
the scanner color correction algorithm efficiently due to the intensive quad/dual instructions and the intelligent DMA.

Table 1: Average number of cycles to process image processing algorithms.

Algorithms Commercial DSP PrimDSP
Contrast Control 24.56 cycles/pixel 12.24 cycles/pixel

Median Saturation 39.19 cycles/pixel 9.72 cycles/pixel
Scanner Color

Correction
8.02 cycles/pixel 4.52 cycles/pixel

Table 2: Synthesis results.

Control Unit 36,893 gates
1 Datapath 78,609 gatesCore Area

Core = Control Unit
+ 4 Datapaths

351,329 gates

Critical Path Delay 3.4ns

PrimDSP is implemented in Verilog HDL and synthesized with 0.13um CMOS technology. Table 2 shows the
synthesis results. The equivalent gate count of a datapath is 78,609gates and that of the control unit is 36,983gates. The
PrimDSP equipped with 4 datapaths occupies 351,329gates. The critical path of PrimDSP is the forwarding path
through a multiplier and has 3.4ns delay. The maximum clock frequency, therefore, is 294MHz.

6. CONCLUSION

A high-performance digital signal processor has been proposed for multi-functional printer systems. The SIMD
architecture is exploited to utilize the common property of image processing algorithms that the same operations are
applied to a bundle of image data. The processor is also based on the traditional RISC-like pipeline to achieve a simple
and fast structure. Various quad/dual instructions are supported to process multiple data at a time, and
extraction/insertion instructions are employed to cope with various data sizes. The execution of a code range can be
specified with a condition such that the instructions in the range are executed only in the datapaths where the condition
bit is set. To reduce the computational overhead needed to align data read from the external memory, an intelligent
DMA is proposed to align the memory data into a form suitable for computation while reading the data from the
memory. Experimental results on typical image processing algorithms show that the proposed SIMD DSP is two times
effective in performance compared to a commercial high-end DSP.

REFERENCES
1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, Prentice Hall, 2002.
2. H. Ancin and A. K. Bhattacharjya, “Text enhancement for laser copiers,” in Proc. Int. Conf. Image Processing,

1999, pp. 494-498.
3. A. Pascovici and J. S. Shu, “Method and apparatus for processing a document by segmentation into text and image

areas,” U.S. Patent 5 883 973, Mar. 16, 1999.
4. C. Lee, M. Eden, and M. Unser, “Near optimal geometric image scaling using oblique projection operators,” in

Proc. Int. Conf. Acoustics, Speech, and Signal Processing, 1996, pp. 2399-2402.
5. H.-H. Cho, C.-H. Choi, B.-H. Kwon, and H.-R. Choi, “A design of contrast controller for image improvement of

multi-gray scale image,” in Proc. Asia Pacific Conference on ASICs, 2000, pp. 131-133.
6. J. Eyre and J. Bier, “The evolution of DSP processors,” [Online]. Available: http://www.BDTI.com
7. Texas Instruments, “TMS320C6000 CPU and Instruction Set Reference Guide,” [Online]. Available:

http://www.ti.com
8. Analog Devices, “ADSP-TS101S,” [Online]. Available: http://www.analog.com
9. Motorola, “SC140 DSP Core Reference Manual,” [Online]. Available: http://www.freescale.com
10. Hitachi, “SH-4R Architecture Technical Overview,” [Online]. Available: http://www.renesas.com
11. J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative Approach, Morgan Kaufman, 1996.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

