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Abstract 
As the complexity of digital filters is dominated by the number 

of multiplications, many works have focused on minimizing the 
complexity of multiplier blocks that compute the constant 
coefficient multiplications required in filters. Although the 
complexity of multiplier blocks is significantly reduced by using 
efficient techniques such as decomposing multiplications into 
simple operations and sharing common subexpressions, previous 
works have not considered the delay of multiplier blocks which is a 
critical factor in the design of complex filters. In this paper, we 
present algorithms to minimize the complexity of multiplier blocks 
under the given delay constraints and apply them to infinite 
impulse response (IIR) filter synthesis. By analyzing multiplier 
blocks in view of delay, three delay reduction methods are 
proposed and combined into previous algorithms. Since the 
proposed algorithms can generate multiplier blocks that meet the 
specified delay, a trade-off between delay and hardware complexity 
is enabled by changing the delay constraints. Experimental results 
show that the proposed algorithms can reduce the delay of 
multiplier blocks at the cost of a little increase of complexity. 

1. INTRODUCTION 

Infinite impulse response (IIR) digital filters are frequently used 
in digital signal processing by virtue of low complexity. Although 
programmable filters based on digital signal processing cores can 
take an advantage of flexibility, they are not suitable for recent 
consumer applications demanding high throughput and low power 
consumption. In such an application, therefore, application specific 
IIR filters are frequently adopted to meet the constraints of 
performance and power consumption.  

The problem of designing filters has received a great attention 
during the last decade, as the filters are suffering from a large 
number of multiplications, leading to excessive area and power 
consumption even if implemented in full custom integrated circuits. 
Many works have focused on replacing multiplications by 
decomposing them into simple operations such as addition, 
subtraction and shift and reducing the number of simple operations. 
In this approach, the hardware block called a multiplier block is 
often used to implement all coefficient multiplications [1]. The 
concept of the multiplier block is significant in both terms of area 
and power because some adders and shifters can be shared among 
different multiplications. 

Many algorithms have been proposed to make the multiplier 
block as simple as possible: Bull-Horrocks(BH) algorithm [2], n-
dimensional reduced adder graph(RAGn) algorithm [1], recursive 
bipartite matching algorithm [3], and common subexpression 
sharing algorithm [4]. Though the algorithms are proposed for FIR 
filters, they can be applied to IIR filters [5][6]. The main purpose 

of these algorithms is to minimize the number of 
additions/subtractions, as the number is proportional to the number 
of two-input adders required in the implementation of a multiplier 
block and the shift can be implemented by wire connections. 
However, the algorithms do not take into account a factor critical in 
high performance filters, the delay of the multiplier block, leading 
to slow filters that may not be suitable for high performance 
systems.  

In this paper, we present new IIR filter synthesis algorithms that 
are based on our multiplier block synthesis algorithm [7]. Since the 
proposed algorithm can generate a multiplier block satisfying a 
given delay constraint, it enables a trade-off between delay and area. 
In this paper, we propose the application of them to IIR filters. The 
rest of this paper is organized as follows. In Section 2, the problem 
to be solved is formally defined, and in Section 3, some basic 
operations proposed to make the multiplier block meet the 
specified delay constraint are described. We explain the proposed 
algorithm and its implementation in Section 4. After we describe 
the structures of IIR filters in Section 5, we show experimental 
results in detail in Section 6, and finally conclusions are made in 
Section 7. 

2. PROBLEM DEFINITION 

In this section, the problem to be solved will be defined formally. 
We will start from introducing the following term to be used 
throughout this paper. 

•  Adder-Step: One adder-step represents an 
adder/subtractor in a maximal path of decomposed 
multiplications. A multiplication can have different adder-
steps, depending on the structure of multiplication.  

The problem to be solved is described as follows:  
•  Problem 1: Given a delay constraint and a set of 
filter coefficients, generate a multiplier block satisfying 
the delay constraint such that the number of 
adders/subtractors is minimal. 

As the delay is dependent on several implementation issues such 
as circuit technology, placement and routing, we regard in this 
paper the delay is specified by the number of adder-steps that 
denotes the maximal number of adders/subtractors allowed to pass 
though to produce any multiplication. In this case, the above 
definition is restated as follows. 

•  Problem 2: Given a maximal number of adder-steps 
and a set of filter coefficients, generate a multiplier block 
that needs a minimal number of adders/subtractors and 
does not violate the number of adder-steps. 

One simple method of achieving the minimum number of adder-
steps N is to construct coefficients individually by using a separate 



binary tree of adders for each ci, meaning that adders associated 
with ci are not shared with those of other cj. 

3. METHODS FOR REDUCING THE NUMBER OF 
ADDER-STEPS 

In this section, we explain three basic methods that are essential 
in reducing the number of adder-steps. Our methods are based on 
BHM[2][5] and RAGn[1][6]. The two algorithms are selected here 
as they produce the minimal number of adders among many 
published algorithms. 

3.1 Tree Reduction 

In constructing coefficients by using the BHM algorithm or the 
RAGn algorithm, several partial sums are selected and added in a 
serial manner as shown in the left of Fig.1. It is obvious that the 
serial structure increases the number of adder-steps. Though the 
cases do not occur frequently, their effect on the number of adder-
steps is significant. To reduce the number of steps for the cases, we 
can employ a tree reduction technique illustrated in Fig.1. The tree 
reduction technique is used to convert a serial adding structure to a 
parallel one.  

In applying the proposed tree reduction technique to the BHM 
algorithm, the sum or difference is put into a temporary set instead 
of directly putting into the partial sum set. When the synthesis of a 
coefficient is completed, the partial sums stored in the temporary 
set are sorted in ascending order of their number of adder-steps, 
and the partial sums with smaller numbers of adder-steps are added 
earlier.  

3.2 Limited Selection Method 

In this and the next subsection, we propose methods to design a 
multiplier block satisfying a given delay specified by the number of 
adder-steps. In our investigation on the previous algorithms, we 
found that a coefficient is synthesized by a series of partial sums 
and the number of adder-steps for the coefficient is determined 
mostly by the first pair of partial sums in that series, that is, the 
adder-steps required to synthesize the first pair of partial sums has a 
great effect on the final number of adder-steps. If we can start from 
a pair requiring small numbers of adder-steps in implementing its 
partial sums, the coefficient can be synthesized with a less number 
of adder-steps. The basic idea is to select the first pair from a 
limited set of partial sums whose adder-steps are less than or equal 
to a given number. An example is illustrated in Fig.2, where the 
following terms are used. 

•  InitRange: the upper limit of the number of adder-
steps that the partial sums in the first selected pair can 
have. 
•  SearchRange: the upper limit of the number of adder-
steps that the partial sums selected at that moment can 
have. 
•  CandidateSet: a subset of partial sums whose number 
of adder-steps is equal to or less than  SearchRange.  

In Fig.2, the first pair of partial sums shown at the bottom is 
selected by setting SearchRange to InitRange. Then the 
CandidateSet is limited to {p | adderStep(p) �  ( SearchRange = 
InitRange )}, where adderStep(p) is the number of adder-steps 
needed for the partial sum p. To select a new partial sum, 
SearchRange is increased by one and the CandidateSet is less 
limited to {p | adderStep(p) �   ( SearchRange = InitRange+1 )}. 
At the next time, SearchRange is increased by one again. If a 
coefficient is to be synthesized with four partial sums as shown in 
Fig.2, it is guaranteed that the number of adder-steps for the 
coefficient is less than or equal to (InitRange+3).  

The complete description of the limited selection method is as 
follows. We begin with the maximally allowable InitRange that is 
one less than the specified number of adder-steps, and 
SearchRange is set to InitRange. After the first pair is selected, the 
error between the coefficient being synthesized and the sum or 
difference of the selected pair is calculated. Then a new partial sum 
closest to the error is selected with SearchRange increased and the 
error is re-calculated. The selection procedure is iterated until the 
sum or difference coincides with the coefficient. As mentioned 
above, SearchRange is increased after each selection, and a less 
limited CandidateSet is considered in the later selection. After 
synthesizing the coefficient, it is examined whether the synthesis of 
the coefficient meets the specification or not. If not, another 
iteration is repeated after decrementing InitRange i.e. reducing the 
CandidateSet for the first pair. If the iteration reaches to a situation 
in which InitRange is less than 1, i.e., the CandidateSet cannot be 
reduced, we conclude that this method cannot synthesize the 
coefficient under the given delay constraint. The coefficient given 
up will be synthesized by the method to be explained in the next 
subsection. 

3.3 Minimum Adder-Step Method 

This method is invoked when some coefficients are not 
synthesized using the above two methods. It is induced from the 
structure of the minimum number of adder-steps. If we want to 
synthesize a coefficient with the minimum number of adder-steps, 
we represent it in the CSD form and add the non-zero digits using 
the tree structure illustrated in Fig.3. In the minimum adder-step 
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Fig. 1. Tree reduction. 
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Fig. 2. Limited selection method. 



method, the procedure for the minimum number of adder-steps is 
progressed step by step. One of the remained coefficients that do 
not satisfy the specification is selected, and for convenience let us 
call the coefficient ci. A pair of non-zero digits in the CSD form of 
ci is selected. Though any pair can be randomly selected, we select 
two non-zero digits at the lower bit location in our implementation. 
The value of the pair is calculated and becomes a new partial sum. 
Next, the methods described in the above subsections are 
progressed again for the remained coefficients. If coefficient ci is 
synthesized with satisfying the specification in the new iteration, 
another coefficient that is not synthesized with a satisfactory 
number of adder-steps is selected and a new partial sum is 
generated by selecting a new pair of non-zero digits in the CSD 
form of the coefficient. If coefficient ci does not satisfy the 
specification in the new iteration, another pair of non-zero digits is 
selected from its CSD, excluding the previously selected pair. The 
selected pair becomes a new partial sum and the methods described 
in the above subsections are processed again. As the procedure is 
basically the same as synthesizing a coefficient with the minimum 
number of adder-steps, any coefficient can be synthesized with 
satisfying the specification unless the specification is less than the 
minimum number of adder-steps.  

4. PROPOSED ALGORITHMS 

In this section, we describe two proposed algorithms that can 
generate multiplier blocks satisfying the given delay constraint. The 
proposed algorithms are based on three methods of reducing the 
number of adder-steps and two previous algorithms, BHM and 
RAGn. 

4.1 Step-Limiting BHM Algorithm (SLBHM) 

Three methods explained in the previous subsections, tree 
reduction, limited selection method, and minimum adder-step 
method, can be combined with the BHM algorithm [2][5]. To 
synthesize a coefficient, the partial sums selected for the coefficient 
are put into the temporary set and rearranged by the tree reduction 
technique. After each synthesis, it is examined whether the 
synthesis satisfies the specification. If it is, a new synthesis starts 
for another coefficient. Otherwise, the candidate set where the 
partial sums are selected is changed by the limited selection method. 
This is iterated until all coefficients are tried. As stated before, 
however, the limited selection method does not guarantee the 
synthesis of all coefficients. If all coefficients are not synthesized, a 
new partial sum is generated by the minimum adder-step method 
and the procedure is repeated. We name this algorithm as step-
limiting BHM(SLBHM) algorithm.  

4.2 Step-Limiting RAGn Algorithm (SLRAGn) 

The limitation method can be easily applied to the RAGn 
algorithm [1][6]. In the optimal part of the RAGn algorithm, the 
partial sums whose number of adders-steps is less than the 
specification are searched. If one coefficient is synthesized at the 
optimal part only using such partial sums, it satisfies the 
specification. The heuristic part can be divided into two parts: the 
cost-2 part that requires two adders and the cost-more part that 
needs more than two adders. As the case that more than two 
selected partial sums require (specification-1) adder-steps is 
unacceptable in the cost-2 part, such partial sums that make the 
case are excluded in the selection of partial sums. In order to 
reduce adder-steps, the cost-more part is replaced by the minimum 
adder-step method, because the cost-more part is very heuristic and 
can be replaced by any reasonable procedure. We name this 
algorithm as step-limiting RAGn(SLRAGn) algorithm. 

5. STRUCTURES OF IIR FILTERS 

Three commonly used IIR filter structures are direct form, 
cascade form, and parallel form. The direct form is obtained 
directly from the system function H(z) written as a ratio of 
polynomials in the variable z-1. The direct form is divided again 
into direct form � and direct form � according to whether the 
parts for zeros are implemented earlier than the parts for poles. The 
cascade form is achieved by factoring the numerator and 
denominator polynomials of H(z). It is usually cascaded with 
several second order filter blocks. When we express H(z) as a 
partial fraction expansion form, we get the parallel form. It consists 
of a parallel combination of second order filter blocks. In addition, 
we can get a transposed form for each form. Fig.4 and Fig.5 shows 
the transposed direct form � and the transposed cascade form 
respectively, where the multipliers included in a dashed box can be 
merged into a multiplier block[5]. 

 

�
��

�
��

�
�

�
�

�
���

�
�

�
���

�
�

�
�

���� ����

Fig. 4. Direct form II structure of IIR filter. 
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Fig. 5. Cascade form structure of IIR filter. 
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Fig. 3. Adding structure for achieving the minimum 
number of adder-steps. 



TABLE I 
Test Filter Specification 

TABLE II 
Numbers of Adders for Cascade Form Filter 1 

TABLE III 
Numbers of Adders for Cascade Form Filter 2 

6.  EXPERIMENTAL RESULTS 

The proposed algorithms are applied to several elliptic IIR filters 
and compared with previous algorithms. The specification of those 
filters are summarized in Table �, where wn denotes the 
normalized cutoff frequency, #tap is the number of taps, and Width 
is the word size in fixed point integer representation. The ripples of 
passband and stopband are 0.1dB and 50dB, respectively. 

In Table �, the results for cascade form of filter 1 obtained by 
the previous and proposed algorithms are shown. The first row 
represents algorithms used. ‘Simple’ means that each coefficient is 
represented by a CSD value and constructed with a separate binary 
tree of adders. The first column is the number of adder-steps for the 
multiplier block optimized by the algorithms identified in the first 
row and the contents of the table are the number of adders needed 
to implement the multiplier block. So the BHM algorithm produces 
a multiplier block of 19 adders and 4 adder-steps and the RAGn 
algorithm produces one of 18 adders and 3 adder-steps. The 
SLBHM algorithm produces two multiplier blocks: one is with 21 
adders and 2 adder-steps and the other with 19 adders and 3 adder-
steps. The SLRAGn algorithm provides two multiplier blocks, too. 
The one is with 19 adders and 2 adder-steps, the other with 18 
adders and 3 adder-steps. Notice that the previous algorithms, 
BHM and RAGn, give only one result and do not allow to specify 
the maximum number of adder-steps, while the proposed algorithm, 
SLBHM and SLRAGn, provide several results under the given 
delay constraint. In Table �, we can see the similar results. Table 
� and � show the results for direct form � of filters. As the 
direct form ��has larger number of coefficients for each multiplier 
block, the number of adder-steps is larger. The results are similar to 
the results for cascade form filters. This implies the proposed 
algorithms enable the trade-off between the number of adders and 

TABLE IV 
Numbers of Adders for Direct Form II Filter 3 

TABLE V 
Numbers of Adders for Direct Form II Filter 4 

the number adder-steps, i.e., between the area and the speed. 

7. CONCLUSIONS 

Delay is as important as area. In the previous works, however, 
only area or the number of adders is considered in implementing 
and optimizing filters. In this paper, we have described IIR filter 
synthesis algorithms that take into account the delay and the 
number of adders. With these algorithms, we can implement filters 
satisfying the given specification of the number of adder-steps. 
Contrast to the previous works that generate only one tuple of the 
number of adders and the number of adder-steps, many tuples are 
generated in the proposed algorithms, and therefore the trade-off 
between area and speed is enabled. Experimental results show that 
the proposed algorithms can reduce the delay of multiplier blocks 
at the cost of a little increase of complexity. 
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 wn #tap Width 
Filter 1 0.05 9 8 
Filter 2 0.1 7 9 
Fitler 3 0.05 7 10 
Filter 4 0.1 5 10 

#adder-step Simple BHM RAGn SLBHM SLRAGn
2 23   21 19 
3   18 19 18 
4  19    

#adder-step Simple BHM RAGn SLBHM SLRAGn
3 27  20 23 20 
4  20  20  

#adder-step Simple BHM RAGn SLBHM SLRAGn 
3 37   27 24 
4   21 23 21 
5    21  
6    21  
7  21  21  

#adder-step Simple BHM RAGn SLBHM SLRAGn 
3 30   20 19 
4    19 17 
5   16 18 16 
6  18    


