
Multiplier-less IIR Filter Synthesis Algorithms to Trade-off the
Delay and the Number of Adders

Hyeong-Ju Kang and In-Cheol Park
Department of Electrical Engineering and Computer Science

KAIST, Korea.

Abstract
As the complexity of digital filters is dominated by the number

of multiplications, many works have focused on minimizing the
complexity of multiplier blocks that compute the constant
coefficient multiplications required in filters. Although the
complexity of multiplier blocks is significantly reduced by using
efficient techniques such as decomposing multiplications into
simple operations and sharing common subexpressions, previous
works have not considered the delay of multiplier blocks which is a
critical factor in the design of complex filters. In this paper, we
present algorithms to minimize the complexity of multiplier blocks
under the given delay constraints and apply them to infinite
impulse response (IIR) filter synthesis. By analyzing multiplier
blocks in view of delay, three delay reduction methods are
proposed and combined into previous algorithms. Since the
proposed algorithms can generate multiplier blocks that meet the
specified delay, a trade-off between delay and hardware complexity
is enabled by changing the delay constraints. Experimental results
show that the proposed algorithms can reduce the delay of
multiplier blocks at the cost of a little increase of complexity.

1. INTRODUCTION

Infinite impulse response (IIR) digital filters are frequently used
in digital signal processing by virtue of low complexity. Although
programmable filters based on digital signal processing cores can
take an advantage of flexibility, they are not suitable for recent
consumer applications demanding high throughput and low power
consumption. In such an application, therefore, application specific
IIR filters are frequently adopted to meet the constraints of
performance and power consumption.

The problem of designing filters has received a great attention
during the last decade, as the filters are suffering from a large
number of multiplications, leading to excessive area and power
consumption even if implemented in full custom integrated circuits.
Many works have focused on replacing multiplications by
decomposing them into simple operations such as addition,
subtraction and shift and reducing the number of simple operations.
In this approach, the hardware block called a multiplier block is
often used to implement all coefficient multiplications [1]. The
concept of the multiplier block is significant in both terms of area
and power because some adders and shifters can be shared among
different multiplications.

Many algorithms have been proposed to make the multiplier
block as simple as possible: Bull-Horrocks(BH) algorithm [2], n-
dimensional reduced adder graph(RAGn) algorithm [1], recursive
bipartite matching algorithm [3], and common subexpression
sharing algorithm [4]. Though the algorithms are proposed for FIR
filters, they can be applied to IIR filters [5][6]. The main purpose

of these algorithms is to minimize the number of
additions/subtractions, as the number is proportional to the number
of two-input adders required in the implementation of a multiplier
block and the shift can be implemented by wire connections.
However, the algorithms do not take into account a factor critical in
high performance filters, the delay of the multiplier block, leading
to slow filters that may not be suitable for high performance
systems.

In this paper, we present new IIR filter synthesis algorithms that
are based on our multiplier block synthesis algorithm [7]. Since the
proposed algorithm can generate a multiplier block satisfying a
given delay constraint, it enables a trade-off between delay and area.
In this paper, we propose the application of them to IIR filters. The
rest of this paper is organized as follows. In Section 2, the problem
to be solved is formally defined, and in Section 3, some basic
operations proposed to make the multiplier block meet the
specified delay constraint are described. We explain the proposed
algorithm and its implementation in Section 4. After we describe
the structures of IIR filters in Section 5, we show experimental
results in detail in Section 6, and finally conclusions are made in
Section 7.

2. PROBLEM DEFINITION

In this section, the problem to be solved will be defined formally.
We will start from introducing the following term to be used
throughout this paper.

• Adder-Step: One adder-step represents an
adder/subtractor in a maximal path of decomposed
multiplications. A multiplication can have different adder-
steps, depending on the structure of multiplication.

The problem to be solved is described as follows:
• Problem 1: Given a delay constraint and a set of
filter coefficients, generate a multiplier block satisfying
the delay constraint such that the number of
adders/subtractors is minimal.

As the delay is dependent on several implementation issues such
as circuit technology, placement and routing, we regard in this
paper the delay is specified by the number of adder-steps that
denotes the maximal number of adders/subtractors allowed to pass
though to produce any multiplication. In this case, the above
definition is restated as follows.

• Problem 2: Given a maximal number of adder-steps
and a set of filter coefficients, generate a multiplier block
that needs a minimal number of adders/subtractors and
does not violate the number of adder-steps.

One simple method of achieving the minimum number of adder-
steps N is to construct coefficients individually by using a separate

binary tree of adders for each ci, meaning that adders associated
with ci are not shared with those of other cj.

3. METHODS FOR REDUCING THE NUMBER OF
ADDER-STEPS

In this section, we explain three basic methods that are essential
in reducing the number of adder-steps. Our methods are based on
BHM[2][5] and RAGn[1][6]. The two algorithms are selected here
as they produce the minimal number of adders among many
published algorithms.

3.1 Tree Reduction

In constructing coefficients by using the BHM algorithm or the
RAGn algorithm, several partial sums are selected and added in a
serial manner as shown in the left of Fig.1. It is obvious that the
serial structure increases the number of adder-steps. Though the
cases do not occur frequently, their effect on the number of adder-
steps is significant. To reduce the number of steps for the cases, we
can employ a tree reduction technique illustrated in Fig.1. The tree
reduction technique is used to convert a serial adding structure to a
parallel one.

In applying the proposed tree reduction technique to the BHM
algorithm, the sum or difference is put into a temporary set instead
of directly putting into the partial sum set. When the synthesis of a
coefficient is completed, the partial sums stored in the temporary
set are sorted in ascending order of their number of adder-steps,
and the partial sums with smaller numbers of adder-steps are added
earlier.

3.2 Limited Selection Method

In this and the next subsection, we propose methods to design a
multiplier block satisfying a given delay specified by the number of
adder-steps. In our investigation on the previous algorithms, we
found that a coefficient is synthesized by a series of partial sums
and the number of adder-steps for the coefficient is determined
mostly by the first pair of partial sums in that series, that is, the
adder-steps required to synthesize the first pair of partial sums has a
great effect on the final number of adder-steps. If we can start from
a pair requiring small numbers of adder-steps in implementing its
partial sums, the coefficient can be synthesized with a less number
of adder-steps. The basic idea is to select the first pair from a
limited set of partial sums whose adder-steps are less than or equal
to a given number. An example is illustrated in Fig.2, where the
following terms are used.

• InitRange: the upper limit of the number of adder-
steps that the partial sums in the first selected pair can
have.
• SearchRange: the upper limit of the number of adder-
steps that the partial sums selected at that moment can
have.
• CandidateSet: a subset of partial sums whose number
of adder-steps is equal to or less than SearchRange.

In Fig.2, the first pair of partial sums shown at the bottom is
selected by setting SearchRange to InitRange. Then the
CandidateSet is limited to {p | adderStep(p) � (SearchRange =
InitRange)}, where adderStep(p) is the number of adder-steps
needed for the partial sum p. To select a new partial sum,
SearchRange is increased by one and the CandidateSet is less
limited to {p | adderStep(p) � (SearchRange = InitRange+1)}.
At the next time, SearchRange is increased by one again. If a
coefficient is to be synthesized with four partial sums as shown in
Fig.2, it is guaranteed that the number of adder-steps for the
coefficient is less than or equal to (InitRange+3).

The complete description of the limited selection method is as
follows. We begin with the maximally allowable InitRange that is
one less than the specified number of adder-steps, and
SearchRange is set to InitRange. After the first pair is selected, the
error between the coefficient being synthesized and the sum or
difference of the selected pair is calculated. Then a new partial sum
closest to the error is selected with SearchRange increased and the
error is re-calculated. The selection procedure is iterated until the
sum or difference coincides with the coefficient. As mentioned
above, SearchRange is increased after each selection, and a less
limited CandidateSet is considered in the later selection. After
synthesizing the coefficient, it is examined whether the synthesis of
the coefficient meets the specification or not. If not, another
iteration is repeated after decrementing InitRange i.e. reducing the
CandidateSet for the first pair. If the iteration reaches to a situation
in which InitRange is less than 1, i.e., the CandidateSet cannot be
reduced, we conclude that this method cannot synthesize the
coefficient under the given delay constraint. The coefficient given
up will be synthesized by the method to be explained in the next
subsection.

3.3 Minimum Adder-Step Method

This method is invoked when some coefficients are not
synthesized using the above two methods. It is induced from the
structure of the minimum number of adder-steps. If we want to
synthesize a coefficient with the minimum number of adder-steps,
we represent it in the CSD form and add the non-zero digits using
the tree structure illustrated in Fig.3. In the minimum adder-step

Target Coefficient

Partial Sums

Target Coefficient

Partial Sums

Fig. 1. Tree reduction.

Target Coefficient

From {p | adderStep(p)<=(SearchRange=InitRange)}

From {p | adderStep(p)<=(SearchRange=InitRange+1)}

From {p | adderStep(p)<=(SearchRange=InitRange+2)}

adderStep(TargetCoefficient)<=InitRange+3

Fig. 2. Limited selection method.

method, the procedure for the minimum number of adder-steps is
progressed step by step. One of the remained coefficients that do
not satisfy the specification is selected, and for convenience let us
call the coefficient ci. A pair of non-zero digits in the CSD form of
ci is selected. Though any pair can be randomly selected, we select
two non-zero digits at the lower bit location in our implementation.
The value of the pair is calculated and becomes a new partial sum.
Next, the methods described in the above subsections are
progressed again for the remained coefficients. If coefficient ci is
synthesized with satisfying the specification in the new iteration,
another coefficient that is not synthesized with a satisfactory
number of adder-steps is selected and a new partial sum is
generated by selecting a new pair of non-zero digits in the CSD
form of the coefficient. If coefficient ci does not satisfy the
specification in the new iteration, another pair of non-zero digits is
selected from its CSD, excluding the previously selected pair. The
selected pair becomes a new partial sum and the methods described
in the above subsections are processed again. As the procedure is
basically the same as synthesizing a coefficient with the minimum
number of adder-steps, any coefficient can be synthesized with
satisfying the specification unless the specification is less than the
minimum number of adder-steps.

4. PROPOSED ALGORITHMS

In this section, we describe two proposed algorithms that can
generate multiplier blocks satisfying the given delay constraint. The
proposed algorithms are based on three methods of reducing the
number of adder-steps and two previous algorithms, BHM and
RAGn.

4.1 Step-Limiting BHM Algorithm (SLBHM)

Three methods explained in the previous subsections, tree
reduction, limited selection method, and minimum adder-step
method, can be combined with the BHM algorithm [2][5]. To
synthesize a coefficient, the partial sums selected for the coefficient
are put into the temporary set and rearranged by the tree reduction
technique. After each synthesis, it is examined whether the
synthesis satisfies the specification. If it is, a new synthesis starts
for another coefficient. Otherwise, the candidate set where the
partial sums are selected is changed by the limited selection method.
This is iterated until all coefficients are tried. As stated before,
however, the limited selection method does not guarantee the
synthesis of all coefficients. If all coefficients are not synthesized, a
new partial sum is generated by the minimum adder-step method
and the procedure is repeated. We name this algorithm as step-
limiting BHM(SLBHM) algorithm.

4.2 Step-Limiting RAGn Algorithm (SLRAGn)

The limitation method can be easily applied to the RAGn
algorithm [1][6]. In the optimal part of the RAGn algorithm, the
partial sums whose number of adders-steps is less than the
specification are searched. If one coefficient is synthesized at the
optimal part only using such partial sums, it satisfies the
specification. The heuristic part can be divided into two parts: the
cost-2 part that requires two adders and the cost-more part that
needs more than two adders. As the case that more than two
selected partial sums require (specification-1) adder-steps is
unacceptable in the cost-2 part, such partial sums that make the
case are excluded in the selection of partial sums. In order to
reduce adder-steps, the cost-more part is replaced by the minimum
adder-step method, because the cost-more part is very heuristic and
can be replaced by any reasonable procedure. We name this
algorithm as step-limiting RAGn(SLRAGn) algorithm.

5. STRUCTURES OF IIR FILTERS

Three commonly used IIR filter structures are direct form,
cascade form, and parallel form. The direct form is obtained
directly from the system function H(z) written as a ratio of
polynomials in the variable z-1. The direct form is divided again
into direct form � and direct form � according to whether the
parts for zeros are implemented earlier than the parts for poles. The
cascade form is achieved by factoring the numerator and
denominator polynomials of H(z). It is usually cascaded with
several second order filter blocks. When we express H(z) as a
partial fraction expansion form, we get the parallel form. It consists
of a parallel combination of second order filter blocks. In addition,
we can get a transposed form for each form. Fig.4 and Fig.5 shows
the transposed direct form � and the transposed cascade form
respectively, where the multipliers included in a dashed box can be
merged into a multiplier block[5].

�
��

�
��

�
�

�
�

�
���

�
�

�
���

�
�

�
�

���� ����

Fig. 4. Direct form II structure of IIR filter.

�
��

�
� ��

�
� ��

�
� ��

����

�
��

�
� ��

�
� ��

�
��

�
���

�
���

�
���

�
��

�
���

�
���

�
���

�
���

�
���

�
��

�
���

�
���

�
���

�
��

�
���

�
���

����

Fig. 5. Cascade form structure of IIR filter.

1011 001 0001

Fig. 3. Adding structure for achieving the minimum
number of adder-steps.

TABLE I
Test Filter Specification

TABLE II
Numbers of Adders for Cascade Form Filter 1

TABLE III
Numbers of Adders for Cascade Form Filter 2

6. EXPERIMENTAL RESULTS

The proposed algorithms are applied to several elliptic IIR filters
and compared with previous algorithms. The specification of those
filters are summarized in Table �, where wn denotes the
normalized cutoff frequency, #tap is the number of taps, and Width
is the word size in fixed point integer representation. The ripples of
passband and stopband are 0.1dB and 50dB, respectively.

In Table �, the results for cascade form of filter 1 obtained by
the previous and proposed algorithms are shown. The first row
represents algorithms used. ‘Simple’ means that each coefficient is
represented by a CSD value and constructed with a separate binary
tree of adders. The first column is the number of adder-steps for the
multiplier block optimized by the algorithms identified in the first
row and the contents of the table are the number of adders needed
to implement the multiplier block. So the BHM algorithm produces
a multiplier block of 19 adders and 4 adder-steps and the RAGn
algorithm produces one of 18 adders and 3 adder-steps. The
SLBHM algorithm produces two multiplier blocks: one is with 21
adders and 2 adder-steps and the other with 19 adders and 3 adder-
steps. The SLRAGn algorithm provides two multiplier blocks, too.
The one is with 19 adders and 2 adder-steps, the other with 18
adders and 3 adder-steps. Notice that the previous algorithms,
BHM and RAGn, give only one result and do not allow to specify
the maximum number of adder-steps, while the proposed algorithm,
SLBHM and SLRAGn, provide several results under the given
delay constraint. In Table �, we can see the similar results. Table
� and � show the results for direct form � of filters. As the
direct form ��has larger number of coefficients for each multiplier
block, the number of adder-steps is larger. The results are similar to
the results for cascade form filters. This implies the proposed
algorithms enable the trade-off between the number of adders and

TABLE IV
Numbers of Adders for Direct Form II Filter 3

TABLE V
Numbers of Adders for Direct Form II Filter 4

the number adder-steps, i.e., between the area and the speed.

7. CONCLUSIONS

Delay is as important as area. In the previous works, however,
only area or the number of adders is considered in implementing
and optimizing filters. In this paper, we have described IIR filter
synthesis algorithms that take into account the delay and the
number of adders. With these algorithms, we can implement filters
satisfying the given specification of the number of adder-steps.
Contrast to the previous works that generate only one tuple of the
number of adders and the number of adder-steps, many tuples are
generated in the proposed algorithms, and therefore the trade-off
between area and speed is enabled. Experimental results show that
the proposed algorithms can reduce the delay of multiplier blocks
at the cost of a little increase of complexity.

References
[1] A. G. Dempster and M. D. Macleod, “Use of minimum adder

multiplier blocks in FIR digital filters,” IEEE Trans. Circuits Syst. II,
vol. 42, no. 9, pp. 569-77, 1995.

[2] D. R. Bull and D. H. Horrocks, “Primitive operator digital filters,”
IEE Proc.-G, vol. 138, no. 3, pp. 401-12, 1991.

[3] M. Potkonjak, M. B. Srivastava, and A. Chandrakasan, “Efficient
substitution of multiple constant multiplications by shifts and
additions using iterative pairwise matching,” in Proc. 31st ACM/IEEE
Design Automation Conf., 1994, pp. 189-94.

[4] R. I. Hartley, “Subexpression sharing in filters using canonic signed
digit multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, no. 10, pp.
677-88, 1996.

[5] D. R. Bull and D. H. Horrocks, “Realization techniques for primitive
operator infinite impulse response digital filters,” in Proc. Int. Symp.
Circuits Syst., 1993, pp. 607-610.

[6] A. G. Dempster and M. D. Macleod, “IIR Digital Filter Design Using
Minimum Adder Multiplier Blocks,” IEEE Trans. Circuits Syst. II,
vol. 45, no. 6, pp. 761-63, 1998.

[7] H. J. Kang, H. Kim, and I. C. Park, “FIR Filter Synthesis Algorithms
for Minimizing the Delay and the Number of Adders,” in Proc. Int.
Conf. Computer Aided Design, 2000, pp. 51-54.

 wn #tap Width
Filter 1 0.05 9 8
Filter 2 0.1 7 9
Fitler 3 0.05 7 10
Filter 4 0.1 5 10

#adder-step Simple BHM RAGn SLBHM SLRAGn
2 23 21 19
3 18 19 18
4 19

#adder-step Simple BHM RAGn SLBHM SLRAGn
3 27 20 23 20
4 20 20

#adder-step Simple BHM RAGn SLBHM SLRAGn
3 37 27 24
4 21 23 21
5 21
6 21
7 21 21

#adder-step Simple BHM RAGn SLBHM SLRAGn
3 30 20 19
4 19 17
5 16 18 16
6 18

