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ABSTRACT

This paper presents an algorithm that explores all the
combinations of sub-modules in the cascade form filter to reduce
hardware complexity under design constraints. Though the
cascade form structure has freedom in pairing and ordering of its
sub-modules, the hardware complexity is subject to the pairing
and ordering if the optimization based on the multiplier block
concept is applied. The proposed algorithm selects the pairing
and ordering that results in the minimal hardware complexity
among all the cases that satisfy the frequency response
specification. To cope with the case that the objective filter has
many taps and the exploration time is too long, a clustering
method is also developed. Experimental results on several filters
show that the proposed algorithm reduces the hardware
complexity by about 10% on the average, while satisfying the
filter specification.

1. INTRODUCTION

Digital filters are frequently used in digital signal processing. In
applications demanding high throughput and low power,
application specific filters are frequently adopted to meet the
constraints of performance and power consumption. In the digital
filter implementation, the.direct form structure and the cascade
form structure are usually.used by virtue of simplicity. The direct
form structure has less hardware complexity, and the cascade
form structure is robust to the quantization and roundoff noise
[11{2]. The hardware complexity of the digital filters can be
reduced by using the concept of multiplier blocks [3]-[5]. In such
approaches, all the coefficient multiplications are decomposed
and considered as a whole to construct a hardware block called a
multiplier block that implements all the coefficient
multiplications. In a multiplier block, the adders used in one
multiplication can be shared with other multiplications.

In the cascade form structure, a variety of theoretically equivalent
implementations can be obtained by simply pairing the poles and
zeros and ordering the sections in different ways. In the previous
works, a number of factors that affect the functionality, such as
coefficient quantization, roundoff noise, and scaling, are
considered to determine the pairing and ordering [1] {2] [6]-[10].
However, they do not consider the hardware complexity because
the pairing and ordering does not affect the complexity of filters.
Although the assumption is valid for the case that the filters are
implemented with multipliers, the pairing and ordering has a
significant effect on the hardware complexity if the concept of
multiplier block is employed.
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In this paper, a pairing and ordering algorithm is suggested for
the cascade form structure, which considers the hardware
complexity in implementing multiplier blocks. Given a filter
equation, the proposed algorithm divides it into second-order
polynomials and determines a set of second-order polynomials to
be implemented in a multiplier block. When there are too many
second-order polynomials, the polynomials are clustered into
medium-sized groups, and the optimum ordering and pairing is
applied to each group.

This paper is organized as follows. In Section 2, the direct form
structure and the cascade form structure are explained, and in
Section 3, the concept of a multiplier block is explained. Section
4 describes the proposed algorithm in detail. Experimental
results are shown in Section 5, and concluding remarks are made
in Section 6.

2. FILTER REALIZATIONS

In IIR filter design, the cascade form structure is preferred to the
direct form structure. In fact, the cascade form structure requires
more hardware complexity than the direct form structure. The
cascade form structure, however, has several advantages that
compensate the hardware overhead. One of them is that it is
generally much less sensitive to coefficient quantization [1].
Another advantage is that its input, x[n], and output, y[n], have
less number of fan-outs, leading to a significant profit in the FIR
filter system that has dozens of taps.

In implementing the cascade form structure, we have to solve two
problems, pairing and ordering. The pairing deals with how to
pair a second-order denominator polynomial and a second-order
numerator polynomial to form a second-order section. The
ordering decides the order of the second-order sections. In the
previous works, many algorithms have been proposed for the
problems to improve the roundoff noise [1]{6]-[10]. An efficient
method is presented in [1] as a rule of thumb. The second-order
denominator polynomial whose poles are closer to the unit circle
should be paired with the second-order numerator polynomial
whose zeros are closer to those poles, and the second-order
sections should be ordered such that the second-order section
whose poles are closer to the unit circle is located closer (or
farther) to the filter-input.

3. MULTIPLIER BLOCK

If the coefficients of a filter are constant, each constant
multiplication can be decomposed into addition, subtraction, and

IV-265



a] ¥ln)

.

~N

Muttiplier sse see
Block 1

Multiplier ~1 1 -1
Block 2 4 Z 4

Block Black
k K+t ~1

™~
N

~N
L

~N
L

g
g

(a) ®)

Figure 1. Multiplier blocks (a) in the transposed direct form
structure and (b) in the transposed cascade form structure.

shift. The complexity of filters in this case is dominated by the
number of additions/subtractions used to implement the
coefficient multiplications as the number is proportional to the
number of two-input adders and the shifting can be implemented
by wire connections. To reduce the complexity, the coefficients
can be restricted to powers-of-two or expressed in canonical
signed-digit (CSD) representation. However, there is another
approach in which coefficient multiplications are considered as a
whole. The hardware block called a multiplier block as in Figure
1 is used to implement all coefficient multiplications. Exploiting
the concept of a multiplier block enables the
additions/subtractions used in one multiplication to be used in
other multiplications. Therefore, it can reduce the number of
additions/subtractions. Many algorithms have been proposed to
make the multiplier block as simple as possible [3-5] In this
paper, BHM algorithm [3] is used because it is fast and produces
the minimal multiplier block among the algorithms.

4. PAIRING AND ORDERING
ALGORITHM

If the concept of multiplier blocks is used, the pairing and
ordering affects the hardware complexity of cascade form filters.
By changing the pairing and ordering, each multiplier block has a
different set of coefficients, and thus it can be implemented with
different hardware complexity. In this section, we present the
proposed algorithm with considering IIR filters. The algorithm,
however, can be easily expanded for FIR filters by eliminating
the denominator part. The proposed algorithm assumes that a
filter is designed with infinite-precision coefficients and the
numerator and the denominator polynomials are factorized into
first- or second-order polynomials.

4.1 Clustering

If the target filter is very complex, it will take very long time to
search all the possible structures. Therefore, the large problem
should be divided into several clusters. There are two issues
related with the clustering. The first one is how many
polynomials a cluster can have. Since the optimal pairing and
ordering is searched in each cluster, increasing the number of
polynomials in a cluster expands the search space and leads to
better results. The processing time of a cluster, however,
increases exponentially according to the cluster size.
Experiments show that a 3-cluster (a cluster that has three
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Figure 2. Clustering schemes: (a) Scheme 1 and (b) Scheme 2.

second-order numerator and denominator polynomials) takes
about two hours to explore all the structures, and a 4-cluster
takes more than two days. The proposed algorithm, therefore,
uses 3 or less sized clusters.

The other issue is how the polynomials are clustered. Since the
ordering may degrade the frequency response severely, the
clustering method must consider the resulting frequency response.
In addition, it is better to put the second-order polynomials that
are likely to be merged to a forth-order polynomial in a cluster
because a forth-order polynomial may have less hardware
complexity than two second-order polynomials. The proposed
algorithm has two clustering schemes. The first is that the
polynomials are ordered as in the conventional method (1] and
then the first three second-order sections are grouped into a
cluster, the next three sections are grouped, and so on. This
clustering scheme is illustrated in Figure 2(a). This method
guarantees that the final frequency response is better than that
obtained by the conventional ordering. The other scheme is
based on the fact that a polynomial with distant roots suffers less
frequency response degradation after quantization. In the
conventional ordering, the second-order sections are ordered in
order of increasing closeness of the poles to the unit circle or in
order of decreasing closeness to the unit circle [1]. The second-
order polynomials whose roots are close to each other, therefore,
may neighbor with each other. Assigning those polynomials to
different clusters can increase the possibility of forth-order
polynomials. If N polynomials in the conventional order are to be
assigned to M clusters, the first M polynomials are assigned to M
clusters one by one, and the next M polynomials are assigned one
by one, and so on, as shown in Figure 2(b). As it is not clear
which method is better, experimental results will be compared
later.

4.2 Scaling and Coefficient Rounding

Many works have treated how to scale each section in filters. The
proposed algorithm is based on the scaling method used in [6].
The proposed algorithm uses different rounding schemes
according to the order of polynomials. Each coefficient of the
second-order polynomials is rounded to the nearest integer. For
the forth-order polynomials, the algorithm selects optimal integer
values from a small search space. After rounding each coefficient
to the nearest integer, it compares the frequency responses of the
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polynomials obtained by changing the integer values by 0~2.
Then it selects the polynomial that has the smallest deviation
from the frequency response of the original infinite-precision
polynomial. It is not allowed to use more-than-forth-order
polynomials for denominators because they degrade the
frequency response severely. If higher-order polynomials are
used for numerators, each coefficient is rounded to the nearest
integer.

4.3 Pairing and Ordering

In a cluster, there are many choices of pairing and ordering. The
original pairing problem means only how to pair a denominator
polynomial and a numerator polynomial. In this paper, however,
the pairing problem also includes how to combine denominator
polynomials or numerator polynomials into higher-order
polynomials. Combining lower-order polynomials into a higher-
order one may reduce the hardware complexity but may
deteriorate the frequency response. It is also important to search
the best ordering of denominator polynomials and numerator
polynomials. The ordering has a significant effect on the
hardware complexity and the frequency response.

The cluster located closer to the filter input is searched earlier.
Initially, a cluster has as many sections as its second-order
denominator polynomials, and each section has its own number.
One of the numbers is assigned to each polynomial, as shown in
Figure 3. Polynomials are paired and ordered according to those
section numbers. The polynomials assigned to the same section
are merged to a higher-order polynomial. The proposed
algorithm explores all the possible assignments. It can be done in
reasonable time since the filter is clustered considering the
execution time. It is prohibited to make a more-than-forth-order
denominator polynomial because the polynomial degrades the
frequency response severely. For each assignment, multiplier
blocks are constructed and optimized. This procedure is
illustrated in Figure 3, where 3 numerator polynomials and 3
denominator polynomials are paired and ordered to construct a
structure. As an example, section number 0, 1, and 0 are assigned
to numerator polynomials and section number 1, 2, and O are
assigned to denominator polynomials. Then the first and third
numerator polynomials are inserted into Section 0, the second
numerator polynomial into Section 1, the first denominator
polynomial into Section 0, and so on. The first and third
numerator polynomials are merged into a forth-order polynomial.
From this structure, 4 multiplier blocks are constructed.

For each pairing and ordering case, the entire frequency response
is estimated. and checked whether it satisfies the filter
specifications. Since the pairings and orderings of the earlier
clusters are already determined, their frequency responses can be
obtained. The pairings and orderings of the later clusters,
however, are not determined, and thus their frequency responses
should be estimated. The proposed algorithm estimates the
responses with assuming that the pairings and orderings of those
clusters are subject to the conventional method [1].

In the proposed algorithm, the frequency response must satisfy
three specifications: passband ripple, stopband ripple, and
roundoff noise variance. If not, the pairing and ordering is
rejected. The algorithm compares the areas of the structures that
satisfy the specifications and selects the pairing and ordering that
produces the minimal area.

S. EXPERIMENTAL RESULTS

The proposed algorithm has been applied to a set of IIR filters.
The specifications of the filters are shown in Table I, where N
is the number of taps, Rp and Rs are the ripples in the passband
and stopband, and Wn is the normalized cut-off frequency. All
the IIR filters are elliptic filters that are designed with infinite-
precision coefficients by using MATLAB. The proposed
algorithm is performed assuming that the coefficients are to be
quantized to 11-bit fixed-point values.

The results are summarized in Table II. The column of Cascade
shows the results obtained by using the cascade form structure,
and Direct is obtained by using the direct form structure. The last
two columns are for the proposed algorithm, where Proposedl
shows the results obtained with the first clustering scheme, and
Proposed2 shows the results with the second clustering scheme.
In Table II, the resulting ripples in the passband and stopband
are denoted as Rp and Rs , respectively, and the roundoff noise
normalized with respect to the rounding noise variance
o2 =27%/12 is Ri. The resulting area is estimated as a weighted
sum of the number of adders and the number of registers. Given a
filter specification, the proposed algorithm selects the minimal-
area structure under the condition that its passband ripple,
stopband ripple, and roundoff noise can be changed by 0.1dB,
2dB, and 6dB, respectively, with respect to those of the initial
cascade form structure.

The direct form structure gives the minimum hardware
complexity. As there are more coefficients in a section of the
direct form structure, the multiplier block synthesis algorithm can
make more adders be shared. However, the direct form structure
is not usually used in IIR filter design because it is heavily
affected by the coefficient quantization and roundoff noise.
Coefficient rounding degrades the frequency response of the
direct form structure so severely that the response is far from the
original filter specification. The empty columns in Table II
denote that the frequency response is beyond the specification.
On the contrary, the proposed algorithm generates filters whose
passband and stopband ripples and roundoff noises are similar to
those of the floating-point or the cascade form filters. It means
that the proposed algorithm generates feasible filters, while
reducing the area by 10%. Compared to the direct form structure
that fails to meet the frequency specification, the proposed
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Table I Filter Specifications

N | Rp(dB) | Rs(dB) | Wn N | Rp(dB) | Rs(dB) | Wn

IIR1 6 1.00 60.0 0.05 IIR7 10 0.67 80.0 0.05

IR2 | 6 1.00 60.0 0.10 | IIR8 10 0.67 80.0 0.10

1IR3 6 1.00 60.0 0.15 IIR9 10 0.67 80.0 0.15

IIR4 8 0.83 60.0 0.05 | IIR10 | 12 0.50 80.0 0.05

IIRS 8 0.83 60.0 0.10 | IIRIL 12 0.50 80.0 0.10

IIR6 8 0.83 60.0 0.15 | IIR12 12 0.50 80.0 0.15

Table II Results for IIR Filters
Cascade Direct Proposed1 Proposed2
Rp Rs Ri Area Rp Rs Ri Area Rp Rs Ri Area Rp Rs Ri Area
IIR1 1.75°] 60.0 374 346 3.26 13.6 64.1 259 1.76 60.1 39.1 304 1.76 60.1 39.1 304
IR2 | 1.04 | 599 [ 26.2 297 620 | 546 | 56.0 280 106 | 598 | 263 269 1.06 | 59.8 | 26.3 269
IIR3 1.03 | 60.0 20.6 318 1.65 59.5 39.6 238 1.06 60.0 26.5 288 1.06 60.0 26.5 288
MR4 | 1.61 | 60.2 429 424 381 1.39 60.1 41.1 403 1.42 60.1 42.8 389
RS | 091 | 60.0 | 30.1 431 367 091 60.0 | 2838 389 096 | 59.8 | 303 382
IIR6 | 0.93 | 59.8 23.7 389 4.26 57.4 60.2 353 0.95 59.9 29.6 366 0.88 59.6 27.7 356
IIR7 1.19 |1 783 43.8 523 353 1.16 80.2 41.8 495 1.09 78.5 37.7 490
IIR8 | 0.86 | 79.7 | 32.0 537 391 094 | 799 | 29.5 494 094 | 789 | 289 460
IR9 | 0.84 | 80.0 26.0 488 384 0.79 79.9 31.7 458 0.82 79.0 31.9 413
IIR10 | 293 | 81.5 473 601 520 2.98 814 47.2 580 2.21 80.2 45.6 559
IIR11 | 0.76 | 786 | 34.3 608 527 0.84 | 789 | 316 573 076 | 79.2 | 316 552
IR12 | 0.83 | 80.0 27.9 608 478 0.72 80.0 32.1 536 0.68 79.9 30.6 526
Avg. - - - 100% - - - 81.7% - - - 92.3% - - - 89.6%
algorithm enables a trade-off between area and frequency L. S. DeBrunner, V. DeBrunner, and P, Pinault, “Variable

response.

6. CONCLUSION

In this paper, we have proposed a new pairing and ordering
algorithm to determine cascade form filter structures. In the
previous works, the pairing and ordering problem is considered
to improve the frequency response. However, the proposed
algorithm explores the pairing and ordering to select a structure
that has the least hardware complexity and satisfies the
frequency-response specification. The target filter is clustered to
reduce the execution time, and the proposed algorithm takes into
account higher-order polynomials to broaden the design space.
The experimental results show that the proposed algorithm
reduces the hardware complexity by 10% on the average, while
achieving almost the same frequency response. In other words,
the proposed algorithm gives a structure that is closer to the
optimal structure.
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