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Abstract 

I n  system-on-a-chip design, interfacing of Intellec- 
tual Property(IP) blocks is one of the most important 
issues. Since most IP’s are provided b y  different ven- 
dors, they have different interface schemes and difler- 
ent operating frequencies. I n  this paper, we propose 
a new interface synthesis method that enables one not 
only to handle the interface between IP’s with different 
operating frequencies but also to minimize the hardware 
resource required for the interface. W e  have demon- 
strated the proposed algorithm b y  applying it to a real 
design example, MP3 decoder, and verified the IIS-to- 
PCI protocol converter on a real hardware system. 

1 Introduction 

Steady advances in design methodology and semi- 
conductor technology has allowed the complexity of a 
single chip to  contain more than one million transis- 
tors [l]. Time-to-market issue in the complex system- 
on-a-chip(SoC) design can only be solved by dealing 
with complex building blocks commonly called Intellec- 
tual Properties IP’s). It is to  be noted that IP-based 

ration and, therefore] a very efficient design verification 
methodolom handling various IP’s with different inter- 

design methodo \ ogy requires a large design space explo- 

face protocols. 
The problem of interface synthesis, as originated 

from the network protocol conversion, has been ad- 
dressed in various literatures 12-91. In computer com- 

- 

munication networks, it is often necessary to  connect 
network components which stand on different network 
architectures. Previous works containing the analysis 
of conversion schemes 12-41 however, have been mainly 
focused on the software aspects without considering the 
hardware aspects. 

Borriello and Katz [lo] introduced the event graph 
to  establish the correct synchronization and data  se- 
quencing. The limitation of this approach is that the 
two protocols should be made compatible manually by 
assigning labels to the data on both sides, since the 
protocol specification is given at the very low level of 
abstraction using waveforms. 

In another approach taken by Narayan and Gajski 
[9], protocol is first classified into five types of atomic 
operations: (1) waiting for an event on an input con- 
trol line, (2) assigning a value to  an output control line, 
(3) reading a value from input data line, (4) assigning 
a, value to  an output data line, and (5) waiting for a 
fixed time interval. Then the protocol is represented as 

an ordered set of relations whose execution is guarded 
by a condition or by a time delay. Finally, relations 
between two protocols are grouped into a set of re- 
lation groups such that in each group the size. of the 
data  generated by the relations in the group from one 
protocol is identical to that expected by the relations 
in the group from the other protocol. Although this 
approach starts from HDL description and considers 
the data  width mismatch between two modules, tim- 
ing constraints are not considered, and thus it may not 
be applied to the real interface synthesis. 

The approach proposed by Sun and Brodersen [SI 
provides a library of components to free the user from 
considering lower-level details, which is very similar to  
the ASIC design process. As in developing the library 
for ASIC design, the approach also requires a large 
library and cannot implement interface logic circuits 
not available in the library. 

The approach proposed by Akella and McMillan 
[7] provides a protocol specification consisting of two 
FSM’s for describing the producer consumer part of 

transitions of the interface. Product of the two FSh4’s 
is taken as a solution, where the invalid state transi- 
tions are pruned according to  the specification. Draw- 
backs are that no mismatch in data  width can be han- 
dled and that the designer has to  manually specify the 
intended behavior of the interface in the form of FSM. 

Since most IP’s are provided by different ven- 
dors with different design environments, they have in- 
evitably different characteristics including operating 
frequency and interface scheme, etc. However, most 
works related to  interface synthesis assume the two 
communicating parties are driven by the same clock. 
In this case, if a designer has some IP’s with mutu- 
ally different operating frequencies] all the IP’s must 
be operated at the lowest frequency causing the per- 
formance degradation. In our approach, this problem 
is overcome by allowing different clocks in communica- 
tion and optimizing the hardware resource. Supporting 
different clocks allows wider choice for candidate IP’s 
to  be integrated on a chip. The assumption of identical 
operating frequency is too hard constraint for selecting 
IP’s and produces poor design quality in the eventual 
SoC design. Moreover, our approach directly synthe- 
sizes interface lo ic from the source description without 
additional modikcation for frequency matching, which 
produces better performance and ease of use. 

This paper is organized as follows. In Section 2, 
the advantage using different frequencies in the inter- 
face is shown through the simple interface example. In 
Section 3, we formulate the interface synthesis problem 
and present interface synthesis for the system-on-a-chip 

the interface and specification descri b ing the valid state 
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considering different operating frequencies. Section 4 
describes new algorithms developed for the selection of 
operating frequency and internal queue sizing. The re- 
sults of application of the proposed algorithm to the 
MPEG decoder is shown in Section 5 followed by the 
conclusion. 

2 Simple 1nterfa.ce Example 

The IDCT block is shown in Fig. l (a ) .  It has 
three different operating phases which are data receiv- 
ing, data processing, and data sending, as shown in 
Fig. l (b) .  It must receive or send a data every one clock 
cycle through 16-bit data bus. As shown in Fig. l (b) ,  
each phase needs at least 338 cycles which consists of 
64 cycles for data receiving, 210 cycles for data process- 
ing, and 64 cycles for data sending. The IDCT block 
is designed with 0.35um standard cell library and can 
be operated up to 70MHz. 

Operating Clock same clock 
Critical Path Delay 9.34nsec 

Equivalent gate count 9424.68 
Estimated Power 11.18mW 

Figure 1. (a) Block diagram and (b) timing diagram 
of IDCT where a data is transmittedheceived every 
clock. 

The basic cy- 
cle for data access needs two cycles, which are address 
sending and data accessing as shown in Fig. 2(b). The 
SRAM controller can be operated up to 100MHz. 

The two IP’s have different interface signals and op- 
erating clock frequencies. Thus, interface logic is syn- 
thesized with two different clocking schemes. If they 
operate at their own clock frequencies, the performance 
can be maximized although the interface logic can be 
slightly complex. Table 1 shows the estimated per- 
formance of hardware interfacing between IDCT and 
SRAM. The second column is obtained when two clock 
inputs of each IP’s are different, that is, the SRAM and 
IDCT block operates at 66MHz and 33MHz, respec- 
tively. Although the SRAM and IDCT block operates 
at more higher clock frequencies, their operating fre- 
quencies are limited by the system specification. The 
third column is obtained when the two clock inputs 
have the same clock frequency. At the different clock 
scheme, we can obtain several advantages which in- 
clude shorter critical path delay, smaller area, and less 
power dissipation. In case of different clocks, inter- 
nal storage elements were eliminated. This produces 
the smaller area. The critical path delay can be re- 
duced due to the smaller area of protocol converter, 
although more states in the protocol converter are in- 
serted. The reduced hardware and the shorter time for 
data transfer reduce the estimated power. In this pa- 
per, for these advantages, we propose a new interface 
synthesis scheme with different clock frequencies. 

Fig. 2(a) shows SRAM controller. 

different clocks 
8.92nsec 
610.69 

1.22mW 

Figure 2. (a) Block diagram and (b) timing dia- 
gram of SRAM controller where a data is trans- 
mittedheceived every two clock. 

3 Interface Synthesis between IP’s with 
Different Operating Frequencies 

In this section, we introduce the interface synthesis 
process and propose a new process for handling IP’s 
with different operating frequencies. 

3.1 Problem formulation 

Fig. 3 shows a simple example of two protocols 
where each protocol is shown as a pair of communicat- 
ing finite state machines; Protocol A is the so-called 
polling model and protocol B is the aclc-nack model. 
Each state is denoted by a circle with the state name, 
transition conditions and outputs shown on edges. The 
string with ’ ?’ character represents the transition con- 
dition and the string with ’!’ character means the out- 
put. 

The aim of interface synthesis is to allow the com- 
municating component of one protocol to communicate 
with that of another protocol. In Fig. 3, let us assume 
that A0 and B1 need to communicate with each other. 
To synthesize an interface between A0 and B1 is t o  
find a new FSM C between A0 and B1 as shown in 
Fig. 4. In Fig. 4, A0 ’believes’ that it is communicat- 
ing with AI which consists of C and B1. Similarly, B1 
regards C and A0 as Bo. Therefore, interface synthesis 
is to find such an FSM C for given protocols A and B. 
In addition, the proposed approach do not have any 
constraint for operating frequency, while the given two 
protocols are operated at the same operating frequency 
in conventional approaches. 

3.2 Basic Interface Synthesis 

In our work, a protocol is modeled by an FSM, which. 
is converted into an LTS(Labe1ed Transition System) 
as used in [7]. We adopted the approach of [7] as the 
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I 

Protocol B 

Figure 3. An example of each of the two model 
protocols: each protocol is represented as a pair 
of communicating FSMs where protocol A is the 
so-called polling model and protocol B is the ack- 
nack  model. 

- - - - - - - _ - - - - - - - - - - -  
BO I 

I 

I L A 1  

Figure 4. An example of interface logic between 
A. and B1: C and B1 mimics Al,  while C and A. 
mimics Bo 

basic interface synthesis algorithm, which is briefly re- 
viewed here. As stated in the problem formulation, 
the input is the description of the two protocols used 
by each module. Fig. 5 shows the relation between 
interface FSMs of the two module+4 and B.  Each de- 
scriptions of the two protocols include the behavior of 
data and control over which the transfer occurs. Since 
the protocol converter has to  communicate with A and 
B ,  Fig. 5 shows that the FSM of the protocol converter 
must be a dual FSM of A if observed from A and a dual 
FSM of B if observed from B. 

In [7], every FSM is described with the general la- 
beled transition system(LTS). The transitions in the 
protocol converter are generated by obtaining the prod- 
uct of the two dual LTSs. For example, C = Ad x Bd in 
Fig. 5. The resulting product machine includes all pos- 
sible combinations of the transitions. Since all possible 
transitions may not be legal transitions and the result 
usually is state explosion [11], a new LTS called an 
interface specification LTS is required to  describe the 
legal transitions. Thus we can eliminate illegal tran- 
sitions and uncontrollable transitions in the Droduct 
of the dual LTSs by using the interface specification 
T'FO rv 1 1 1  
L l l O  1' 111. 

3.3 Ip's with different o erating frequencies 
In Fig. 5, let us assume t f a t  the producer,A, is oper- 

ated at the clock frequency f A ,  while the consumer,B, 

Conversion Specification 

Protocol conveltsr 
C rnt 

message 
lossless 

message 
lossle*s 

Figure 5. Constructing a protocol converter using 
dual machines and conversion specification 

is operated at fs. Let us assume that fA  is smaller 
than f B ,  that is, the producer is operated at lower clock 
frequency without loss of the generality. Additionally, 
we assume that two clocks have the same clock source 
and they are synchronized at their edges. The sim- 
plest approach for the protocol converter is very triv- 
ial. All the LTSs, i.e., the producer, the consumer, and 
the protocol converter, are operated at the same clock, 
which is the slowest clock. This approach does not 
cause any problem except for the performance degra- 
dation. 

The next approach provides the better performance 
by allowing different clock frequencies. The producer 
and the consumer are operated at their own operating 
frequency, f,4 and fs respectively, while the protocol 
converter is operated at certain frequency which may 
be either fB  or f A .  However, this solution causes some 
problems. If it is operated at fB ,  the protocol con- 
verter receives too many redundant messages from the 
producer. As the clock period of the producer is longer 
than that of the protocol converter. On the other hand, 
it sends too many redundant messages to  the consumer. 
In the following we classified the situation. in two cases 
according to  the value of 2. 
3.4 Case I: 2 is an integer number 

Fig. 6 shows the case when f B  is some integer mul- 
tiple of f A .  The protocol converter, which consists of 
two FSMs(Ad and B:), operates at fB,  because if it 
operates a t  t l e  lower clock frequency, f A ,  the signal 
of the fast FSM(B) changes within a clock period and 
, therefore, interfacing is not working. Thus it oper- 
ates at the higher clock frequency, fs. Since the in- 
terface between B and B,d operates at the same clock 
frequency, we do not need any special consideration. 
However, some modifications are necessary between A 
and At.  

Figure 6. Case I: f B  = n x f A ,  where n is an integer. 

Interface synthesis is performed after the states and 
edges are modified according to  the following path. 
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Thus let us focus on the output generation paths of A,d 
which can be classified into the following four paths: 

Path l(signa1 1-+ signal 3): For this path the in- 
put signal(signa1 1) has the longer period than the out- 
put signal(signa1 3). An obvious and efficient solution 
for this case is to insert a frequency matching counter 
which counts from 0 to ( n  - 1) = (h - 1). If f~ 
and f~ are lOMHz and 20MH2, respectively, an input 
signal has to be sampled at 10MHz. Otherwise, i.e., 
if sampled at 20MH2, the FSM of A,d transits twice 
as if an input signal has been asserted for two suc- 
cessive cycles. This situation can be avoided with the 
clock cycle counter shown in Fig. 6. The output of the 
counter is asserted to enable input sampling at every 
TO(= n.Tl). TO and TI represents the clock periods cor- 
responding to  f~ and fs, respectively. In Fig. 7 which 
shows the modified FSM for frequency matching, (a) 
shows an original FSM which waits for the signal p o l l  
and transmits d a t a  until the signal l a s t  is asserted, 
while b) shows the modified FSM in which the transi- 

counter(cntN) is asserted. 

fA 

tion o I state occurs only when the output signal of the 

Figure 7. Path 1 : (a) original FSM, and (b) Modified 
FSM for frequency matching. 

Path 2(signal 4 + signal 3): This path does not 
need to be considered since the input(signa1 4) and 
output(signa1 3) signals are connected between the in- 
ter module of the protocol converter operating at the 
same operating frequency. 

Path 3(signal 1 + signal 2): Similar to the path 1, 
the input signal needs to be sub-sampled. In addition, 
since the output signal is the input to A, it must be 
extended to cover one To. The transition edges of the 
FSM corresponding to  input signals are modified in 
the same way as path 1, and those corresponding to 
output signa!s are also inserted. The inserted edges 
help assert the output signals during one To. In Fig. 8, 
newly inserted transition edges are represented as solid 
arrows. 

Path 4(signal 4 + signal 2): This requires more 
complex modifications which include some new states 
and transition edges. In this path, the input sig- 
nals(signal4) are valid during only 7'1. If an input sig- 
nal is changed, this information is stored within a new 
state and is restored when the two clocks are matched 
every TO(= n .  T I ) .  Thus one input signal makes two 
new states which are used for storing a signal transi- 
tion and asserting an output signal during To(= n.7'1). 
In the example of Fig. 9(b), if the signal l a s t  changes 
and the current state is ' 1 ' , state transits to ' 1-1 ' or 
'12' according to the time when the signal changes. 

Figure 8. Path 3: (a) original FSM, and (b) its Mod- 
ified FSM for frequency matching obtained by in- 
serting new edges 

Then new input signal can be asserted after the output 
signal of the counter(cntN) is asserted. 

Figure 9. Path 4: (a) original FSM, and (b) its Mod- 
ified FSM obtaining by inserting new states and 
edges 

3.5 
If the ratio, 2, is not an integer but a real number, 

then the several solutions are possible. The simplest 
solution is that both IP's are operated at the lower 
clock frequency. This requires no additional hardware 
although it degrades some performance. The next so- 
lution is to find the least common multiplier(LCM) of 
both clock frequencies since any real number can be 
represented as a ratio of two integers. For example, 
the ratio of 1.5 can be represented as 2:3. Then the 
LCM clock is inserted to all the blocks including the 
protocol converter, the producer, and the consumer. 
In this case, the interface between the protocol con- 
verter and the producer(consumer) is synthesized as 
in the case I. Thus the protocol converter needs two 
frequency matching counters as shown in Fig. 10. 

However, if the two clock frequencies are slightly dif- 
ferent, the LCM clock may be infeasible to implement. 
For example, if f~ and f~ are 59MHz and 6OMHz 
respectively, then the 3.54GHz clock must be gener- 
ated! It is nearly impossible to make such high fre- 
quency clock. In this case, the clock frequency should 
be slightly changed a priori to make the LCM a rea- 
sonable value. 
4 More Considerations for Interface 

Synthesis 
Until now, we assumed that IP's operate at certain 

single clock frequency. However, each IP  has gener- 
ally its operating range, bounded by the lowest and the 

Case 11: 2 is a real number 
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Figure 
number 

10. Case II: fA = T x fs, where T is a real 

highest operating frequency. In this condition, we must 
first determine the operating frequency. Fortunately, if 
the operating ranges of two IP's are overlapped, we can 
just select any frequency within the overlapped range. 
In our interface synthesis approach, if two IP's are op- 
erated at  different frequencies, then we must find an 
LCM frequency. Here our synthesis approach is ex- 
tended to the case having the operating range of IP's. 
4.1 Determination of operating frequency 

Fig. 11 shows the pseudo code for determining the 
operating frequency. In this algorithm, inputs of the 
algorithm are the operating ranges of two IP's ,a.e., 
a range , ( f~ l ,  fm) and another range , ( fm fm). The 
algorithm determines the common operating frequency 
which equals an integer times the operating frequency 
of each IP. In the inner while loop, it searches an 
overlapping range between the ranges as the slow IP  
range is widened by multiplying an integer number. 
If the overlapping range cannot be found in the cur- 
rent range of the fast IP, the fast range is widened in 
the outer while loop. This iteration is continued until 
the overlapped range is found. For example, one IP 
operates from 15MHz to 20MHz, and the other IP  op- 
erates from 42MHz to 44MHz. Then, in the first inner 
loop, overlapped ranged is not found, since the integer 
multiple ranges of the lower IP  are (30MHz, 40MHz), 
(45MHz, GOMHz), etc. In outer loop, the range of the 
fast IP is changed into (84MHz, 88MHz). The range 
is overlapped with (75MHz,lOOMHz) which equals the 
five times of the range (15MHz, 20MHz). Finally, the 
frequency, 88MHz, is determined as the operating fre- 
quency, since it is the highest frequency of overlapped 
range, i.e. (84MHz, 88MHz). 

4.2 Determining of queue sizing 
Some protocols may have strict timing constraints 

between one message and the next message. If IP's 
based on these protocols are communicated through 
the protocol converter and have different operating fre- 
quencies, the protocol converter needs internal storage 
elements. As shown in Fig. 5, if a message must be sent 
every three clocks and received every single clock, the 
protocol of the consumer can be violated because mes- 
sages are not available in time. This problem is solved 
with an internal queue which first stores all messages 
for sending and sends the stored messages according 
to the consumer protocol. In this case, the objective 
is to minimize the internal queue size which can be 
formulated as follows: 
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input: fL1,fH17fL2,fH2 

while fL2 <= fmar do 
output: fcommon 

while n . fLl <= m . fH2 do 
if (n. fLl, n . f ~ 1 )  overlap with (m. fLz, m. fH2) 

return fcommon = min( n fL1, m .  f ~ 2  ); 
else 

n = n + l ;  
end if 

end while 
m = m + l ;  

end while 
return fcommon = cannotfind; 

Figure 11. Algorithm for determining of operating 
frequency, where assume that f~~ < f~~ and fffl < 
f H 2  

where Dtotal is the total amount of message sent, Rn10 
represents the rate of message sending, R,1 represents 
the rate of message reception, where we assumed that 
receiving rate is higher than the sending rate. 

If a queue size equals Dtotal, then all data can be 
stored in the queue and the stored data are sent to 
the consumer sequentially. Since a queue can han- 
dle receiving and sending of data concurrently, send- 
ing operation can be started just after certain amount 
of data is stored. In the equation 1, the right term, 
lDtotal . R,o/R,I J, corresponds to the data operated 
concurrently. For example, if we have a 256 bit mes- 
sages and the sending rate and receiving rate are lMbps 
and 2Mbps respectively, then the required queue size is 
128 bits. The consumer protocol starts just after 128 
bit messages are all stored in the internal queue. After 
this time, the internal queue stores the remaining 128 
bits and sends messages concurrently. 

5 Experiment 

The proposed approach is applied to  an MPEG 2 au- 
dio layer 3(MP3) player system through Virtual Chip 
System [12,13]. In the MP3 decoder example, the in- 
terface part deals with three ports consisting of one 
IIC port, two IIS ports, and PCI interface connects 
between these ports and the software model. PCI in- 
terface operates at  33MHz, while one IIC and two IIS 
operate at 500KHz and 3MHz, respectively. Moreover, 
the data width of each protocol is not matched. 

The decoded bit stream must be supplied continu- 
ously to the D/A Converter(DAC) of the MP3 player 
system at the bit rate of 3Mbps using IIS protocol. 
If the decoded bit stream is infinite, an infinite size 
queue which stores all the decoded bit stream is re- 
quired, which is infeasible. Moreover, since the MP3 
software model requires time for decoding a input bit 
stream, a chunk of 16-bit data should be occasionally 
supplied through PCI interface. Therefore, the de- 
coded bit stream must be divided by certain amount. 
In this example, the decoded bit stream is divided by 
90.9K bits which correspond to 1M cycles at 33MHz 



Figure 12. The lower part shows the block diagram 
of an MPEG 2 audio layer 3(MP3) player system. 
MP3 decoder(MAS3507D) has three interface ports 
which consist of one IIC port, two IIS ports 

as shown in equation 2 ,  though the protocol converter 
must infinitely supply it. Thus the required queue size 
can be calculated as follows: 

IM-cycle 
33MHt 

x 3Mbps = 90.9Kbit (2)  Dtota l  = 

(4) 
33MHz x l6bit = 132Mbps 

PO + P1 Rm1 = 

Rmo 
Rm 1 

Queue Size = Dtotal - LDtotal---J = 88.8Kbit (5) 

Equation 2 shows the 11s protocol during 1M cycle 
transfers 90.9Kbits. In equation 4, (PO + P1) means 
the number of clock for single P C I  write transaction 
which requires minimum 4 cycles. Although this exam- 
ple does not show much reduction of queue size, if the 
decoded output stream has hi her bit rate, queue size 
can be significantly reduced. 1 s  shown in Fig. 13, the 
11s-to-PCI protocol converter is operated at 33MHz. 
Thus the PCI FSM makes a data  valid signal for 11s 
protocol using a counter which counts from 0 to 10. 

11 %:Y 11 --JLrtn:::~::l tlJ 
IIS.tePcI hn 

Po PI n w  RDtosd Conr.n.r 

Figure 13. IIS-to-PCI protocol converter: decoded 
bit stream is connected to DAC using IIS proto- 
col which is lbit serial output and is received 
from software using PCI protocol which consists 
of three phases. PO-phase is required to initiate 
PCI transaction, P1-phase is used to send decoded 
data, and P2 is the time for MP3 software decoding 
of new IIS data. 

6 Conclusion 
Integrating IP's that are developed by different ven- 

dors is an important issues in the SoC design, as the 
different design environment produces different inter- 
face protocols and operating frequencies. For the ex- 
ploration of large design space in SoC design, the auto- 
matic interface synthesis is one of the most important 
part. The approach proposed in this paper can be use- 
ful to  a designer not only to  make automatic interface 
synthesis but also to  consider multi-clock operating en- 
vironment. This approach can be started with the op- 
erating frequency and queue size determined. Then 
the input FSM is modified according to  the input and 
output path combinations. Finally the conventional 
interface synthesis is performed. This approach was 
successfully applied to  Virtual Chip System in order 
to  verify the 11s-to-PCI protocol converter on a real 
hardware system. 
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