
Synthesis and Optimization of Interface Hardware
between IP’s Operating at Different Clock Frequencies

Bong-I1 Park, Hoon Choi, In-Cheol Park, and Chong-Min Kyung
Div. of EE, Dept. of EECS, KAIST

E-mail: bipark@duo.kaist .ac. kr, hchoi7@samsung.co.kr, { icpark,kyung}@ee.kaist .ac. kr

Abstract

I n system-on-a-chip design, interfacing of Intellec-
tual Property(IP) blocks is one of the most important
issues. Since most IP’s are provided b y different ven-
dors, they have different interface schemes and difler-
ent operating frequencies. I n this paper, we propose
a new interface synthesis method that enables one not
only to handle the interface between IP’s with different
operating frequencies but also to minimize the hardware
resource required for the interface. W e have demon-
strated the proposed algorithm b y applying it to a real
design example, MP3 decoder, and verified the IIS-to-
PCI protocol converter on a real hardware system.

1 Introduction

Steady advances in design methodology and semi-
conductor technology has allowed the complexity of a
single chip to contain more than one million transis-
tors [l]. Time-to-market issue in the complex system-
on-a-chip(SoC) design can only be solved by dealing
with complex building blocks commonly called Intellec-
tual Properties IP’s). It is to be noted that IP-based

ration and, therefore] a very efficient design verification
methodolom handling various IP’s with different inter-

design methodo \ ogy requires a large design space explo-

face protocols.
The problem of interface synthesis, as originated

from the network protocol conversion, has been ad-
dressed in various literatures 12-91. In computer com-

-

munication networks, it is often necessary to connect
network components which stand on different network
architectures. Previous works containing the analysis
of conversion schemes 12-41 however, have been mainly
focused on the software aspects without considering the
hardware aspects.

Borriello and Katz [lo] introduced the event graph
to establish the correct synchronization and data se-
quencing. The limitation of this approach is that the
two protocols should be made compatible manually by
assigning labels to the data on both sides, since the
protocol specification is given at the very low level of
abstraction using waveforms.

In another approach taken by Narayan and Gajski
[9], protocol is first classified into five types of atomic
operations: (1) waiting for an event on an input con-
trol line, (2) assigning a value to an output control line,
(3) reading a value from input data line, (4) assigning
a, value to an output data line, and (5) waiting for a
fixed time interval. Then the protocol is represented as

an ordered set of relations whose execution is guarded
by a condition or by a time delay. Finally, relations
between two protocols are grouped into a set of re-
lation groups such that in each group the size. of the
data generated by the relations in the group from one
protocol is identical to that expected by the relations
in the group from the other protocol. Although this
approach starts from HDL description and considers
the data width mismatch between two modules, tim-
ing constraints are not considered, and thus it may not
be applied to the real interface synthesis.

The approach proposed by Sun and Brodersen [SI
provides a library of components to free the user from
considering lower-level details, which is very similar to
the ASIC design process. As in developing the library
for ASIC design, the approach also requires a large
library and cannot implement interface logic circuits
not available in the library.

The approach proposed by Akella and McMillan
[7] provides a protocol specification consisting of two
FSM’s for describing the producer consumer part of

transitions of the interface. Product of the two FSh4’s
is taken as a solution, where the invalid state transi-
tions are pruned according to the specification. Draw-
backs are that no mismatch in data width can be han-
dled and that the designer has to manually specify the
intended behavior of the interface in the form of FSM.

Since most IP’s are provided by different ven-
dors with different design environments, they have in-
evitably different characteristics including operating
frequency and interface scheme, etc. However, most
works related to interface synthesis assume the two
communicating parties are driven by the same clock.
In this case, if a designer has some IP’s with mutu-
ally different operating frequencies] all the IP’s must
be operated at the lowest frequency causing the per-
formance degradation. In our approach, this problem
is overcome by allowing different clocks in communica-
tion and optimizing the hardware resource. Supporting
different clocks allows wider choice for candidate IP’s
to be integrated on a chip. The assumption of identical
operating frequency is too hard constraint for selecting
IP’s and produces poor design quality in the eventual
SoC design. Moreover, our approach directly synthe-
sizes interface lo ic from the source description without
additional modikcation for frequency matching, which
produces better performance and ease of use.

This paper is organized as follows. In Section 2,
the advantage using different frequencies in the inter-
face is shown through the simple interface example. In
Section 3, we formulate the interface synthesis problem
and present interface synthesis for the system-on-a-chip

the interface and specification descri b ing the valid state

0-7695-0801-4/00 $10.00 0 2000 IEEE

considering different operating frequencies. Section 4
describes new algorithms developed for the selection of
operating frequency and internal queue sizing. The re-
sults of application of the proposed algorithm to the
MPEG decoder is shown in Section 5 followed by the
conclusion.

2 Simple 1nterfa.ce Example

The IDCT block is shown in Fig. l (a) . It has
three different operating phases which are data receiv-
ing, data processing, and data sending, as shown in
Fig. l (b) . It must receive or send a data every one clock
cycle through 16-bit data bus. As shown in Fig. l (b) ,
each phase needs at least 338 cycles which consists of
64 cycles for data receiving, 210 cycles for data process-
ing, and 64 cycles for data sending. The IDCT block
is designed with 0.35um standard cell library and can
be operated up to 70MHz.

Operating Clock same clock
Critical Path Delay 9.34nsec

Equivalent gate count 9424.68
Estimated Power 11.18mW

Figure 1. (a) Block diagram and (b) timing diagram
of IDCT where a data is transmittedheceived every
clock.

The basic cy-
cle for data access needs two cycles, which are address
sending and data accessing as shown in Fig. 2(b). The
SRAM controller can be operated up to 100MHz.

The two IP’s have different interface signals and op-
erating clock frequencies. Thus, interface logic is syn-
thesized with two different clocking schemes. If they
operate at their own clock frequencies, the performance
can be maximized although the interface logic can be
slightly complex. Table 1 shows the estimated per-
formance of hardware interfacing between IDCT and
SRAM. The second column is obtained when two clock
inputs of each IP’s are different, that is, the SRAM and
IDCT block operates at 66MHz and 33MHz, respec-
tively. Although the SRAM and IDCT block operates
at more higher clock frequencies, their operating fre-
quencies are limited by the system specification. The
third column is obtained when the two clock inputs
have the same clock frequency. At the different clock
scheme, we can obtain several advantages which in-
clude shorter critical path delay, smaller area, and less
power dissipation. In case of different clocks, inter-
nal storage elements were eliminated. This produces
the smaller area. The critical path delay can be re-
duced due to the smaller area of protocol converter,
although more states in the protocol converter are in-
serted. The reduced hardware and the shorter time for
data transfer reduce the estimated power. In this pa-
per, for these advantages, we propose a new interface
synthesis scheme with different clock frequencies.

Fig. 2(a) shows SRAM controller.

different clocks
8.92nsec
610.69

1.22mW

Figure 2. (a) Block diagram and (b) timing dia-
gram of SRAM controller where a data is trans-
mittedheceived every two clock.

3 Interface Synthesis between IP’s with
Different Operating Frequencies

In this section, we introduce the interface synthesis
process and propose a new process for handling IP’s
with different operating frequencies.

3.1 Problem formulation

Fig. 3 shows a simple example of two protocols
where each protocol is shown as a pair of communicat-
ing finite state machines; Protocol A is the so-called
polling model and protocol B is the aclc-nack model.
Each state is denoted by a circle with the state name,
transition conditions and outputs shown on edges. The
string with ’ ?’ character represents the transition con-
dition and the string with ’!’ character means the out-
put.

The aim of interface synthesis is to allow the com-
municating component of one protocol to communicate
with that of another protocol. In Fig. 3, let us assume
that A0 and B1 need to communicate with each other.
To synthesize an interface between A0 and B1 is t o
find a new FSM C between A0 and B1 as shown in
Fig. 4. In Fig. 4, A0 ’believes’ that it is communicat-
ing with AI which consists of C and B1. Similarly, B1
regards C and A0 as Bo. Therefore, interface synthesis
is to find such an FSM C for given protocols A and B.
In addition, the proposed approach do not have any
constraint for operating frequency, while the given two
protocols are operated at the same operating frequency
in conventional approaches.

3.2 Basic Interface Synthesis

In our work, a protocol is modeled by an FSM, which.
is converted into an LTS(Labe1ed Transition System)
as used in [7]. We adopted the approach of [7] as the

520

I

Protocol B

Figure 3. An example of each of the two model
protocols: each protocol is represented as a pair
of communicating FSMs where protocol A is the
so-called polling model and protocol B is the ack-
nack model.

- - - - - - - _ - - - - - - - - - - -
BO I

I

I L A 1

Figure 4. An example of interface logic between
A. and B1: C and B1 mimics Al, while C and A.
mimics Bo

basic interface synthesis algorithm, which is briefly re-
viewed here. As stated in the problem formulation,
the input is the description of the two protocols used
by each module. Fig. 5 shows the relation between
interface FSMs of the two module+4 and B. Each de-
scriptions of the two protocols include the behavior of
data and control over which the transfer occurs. Since
the protocol converter has to communicate with A and
B , Fig. 5 shows that the FSM of the protocol converter
must be a dual FSM of A if observed from A and a dual
FSM of B if observed from B.

In [7], every FSM is described with the general la-
beled transition system(LTS). The transitions in the
protocol converter are generated by obtaining the prod-
uct of the two dual LTSs. For example, C = Ad x Bd in
Fig. 5. The resulting product machine includes all pos-
sible combinations of the transitions. Since all possible
transitions may not be legal transitions and the result
usually is state explosion [11], a new LTS called an
interface specification LTS is required to describe the
legal transitions. Thus we can eliminate illegal tran-
sitions and uncontrollable transitions in the Droduct
of the dual LTSs by using the interface specification
T'FO rv 1 1 1
L l l O 1' 111.

3.3 Ip's with different o erating frequencies
In Fig. 5, let us assume t f a t the producer,A, is oper-

ated at the clock frequency f A , while the consumer,B,

Conversion Specification

Protocol conveltsr
C rnt

message
lossless

message
lossle*s

Figure 5. Constructing a protocol converter using
dual machines and conversion specification

is operated at fs. Let us assume that fA is smaller
than f B , that is, the producer is operated at lower clock
frequency without loss of the generality. Additionally,
we assume that two clocks have the same clock source
and they are synchronized at their edges. The sim-
plest approach for the protocol converter is very triv-
ial. All the LTSs, i.e., the producer, the consumer, and
the protocol converter, are operated at the same clock,
which is the slowest clock. This approach does not
cause any problem except for the performance degra-
dation.

The next approach provides the better performance
by allowing different clock frequencies. The producer
and the consumer are operated at their own operating
frequency, f,4 and fs respectively, while the protocol
converter is operated at certain frequency which may
be either fB or f A . However, this solution causes some
problems. If it is operated at fB , the protocol con-
verter receives too many redundant messages from the
producer. As the clock period of the producer is longer
than that of the protocol converter. On the other hand,
it sends too many redundant messages to the consumer.
In the following we classified the situation. in two cases
according to the value of 2.
3.4 Case I: 2 is an integer number

Fig. 6 shows the case when f B is some integer mul-
tiple of f A . The protocol converter, which consists of
two FSMs(Ad and B:), operates at fB, because if it
operates a t t l e lower clock frequency, f A , the signal
of the fast FSM(B) changes within a clock period and
, therefore, interfacing is not working. Thus it oper-
ates at the higher clock frequency, fs. Since the in-
terface between B and B,d operates at the same clock
frequency, we do not need any special consideration.
However, some modifications are necessary between A
and At.

Figure 6. Case I: f B = n x f A , where n is an integer.

Interface synthesis is performed after the states and
edges are modified according to the following path.

52 1

Thus let us focus on the output generation paths of A,d
which can be classified into the following four paths:

Path l(signa1 1-+ signal 3): For this path the in-
put signal(signa1 1) has the longer period than the out-
put signal(signa1 3). An obvious and efficient solution
for this case is to insert a frequency matching counter
which counts from 0 to (n - 1) = (h - 1). If f~
and f~ are lOMHz and 20MH2, respectively, an input
signal has to be sampled at 10MHz. Otherwise, i.e.,
if sampled at 20MH2, the FSM of A,d transits twice
as if an input signal has been asserted for two suc-
cessive cycles. This situation can be avoided with the
clock cycle counter shown in Fig. 6. The output of the
counter is asserted to enable input sampling at every
TO(= n.Tl). TO and TI represents the clock periods cor-
responding to f~ and fs, respectively. In Fig. 7 which
shows the modified FSM for frequency matching, (a)
shows an original FSM which waits for the signal p o l l
and transmits d a t a until the signal l a s t is asserted,
while b) shows the modified FSM in which the transi-

counter(cntN) is asserted.

fA

tion o I state occurs only when the output signal of the

Figure 7. Path 1 : (a) original FSM, and (b) Modified
FSM for frequency matching.

Path 2(signal 4 + signal 3): This path does not
need to be considered since the input(signa1 4) and
output(signa1 3) signals are connected between the in-
ter module of the protocol converter operating at the
same operating frequency.

Path 3(signal 1 + signal 2): Similar to the path 1,
the input signal needs to be sub-sampled. In addition,
since the output signal is the input to A, it must be
extended to cover one To. The transition edges of the
FSM corresponding to input signals are modified in
the same way as path 1, and those corresponding to
output signa!s are also inserted. The inserted edges
help assert the output signals during one To. In Fig. 8,
newly inserted transition edges are represented as solid
arrows.

Path 4(signal 4 + signal 2): This requires more
complex modifications which include some new states
and transition edges. In this path, the input sig-
nals(signal4) are valid during only 7'1. If an input sig-
nal is changed, this information is stored within a new
state and is restored when the two clocks are matched
every TO(= n . T I) . Thus one input signal makes two
new states which are used for storing a signal transi-
tion and asserting an output signal during To(= n.7'1).
In the example of Fig. 9(b), if the signal l a s t changes
and the current state is ' 1 ' , state transits to ' 1-1 ' or
'12' according to the time when the signal changes.

Figure 8. Path 3: (a) original FSM, and (b) its Mod-
ified FSM for frequency matching obtained by in-
serting new edges

Then new input signal can be asserted after the output
signal of the counter(cntN) is asserted.

Figure 9. Path 4: (a) original FSM, and (b) its Mod-
ified FSM obtaining by inserting new states and
edges

3.5
If the ratio, 2, is not an integer but a real number,

then the several solutions are possible. The simplest
solution is that both IP's are operated at the lower
clock frequency. This requires no additional hardware
although it degrades some performance. The next so-
lution is to find the least common multiplier(LCM) of
both clock frequencies since any real number can be
represented as a ratio of two integers. For example,
the ratio of 1.5 can be represented as 2:3. Then the
LCM clock is inserted to all the blocks including the
protocol converter, the producer, and the consumer.
In this case, the interface between the protocol con-
verter and the producer(consumer) is synthesized as
in the case I. Thus the protocol converter needs two
frequency matching counters as shown in Fig. 10.

However, if the two clock frequencies are slightly dif-
ferent, the LCM clock may be infeasible to implement.
For example, if f~ and f~ are 59MHz and 6OMHz
respectively, then the 3.54GHz clock must be gener-
ated! It is nearly impossible to make such high fre-
quency clock. In this case, the clock frequency should
be slightly changed a priori to make the LCM a rea-
sonable value.
4 More Considerations for Interface

Synthesis
Until now, we assumed that IP's operate at certain

single clock frequency. However, each IP has gener-
ally its operating range, bounded by the lowest and the

Case 11: 2 is a real number

522

Figure
number

10. Case II: fA = T x fs, where T is a real

highest operating frequency. In this condition, we must
first determine the operating frequency. Fortunately, if
the operating ranges of two IP's are overlapped, we can
just select any frequency within the overlapped range.
In our interface synthesis approach, if two IP's are op-
erated at different frequencies, then we must find an
LCM frequency. Here our synthesis approach is ex-
tended to the case having the operating range of IP's.
4.1 Determination of operating frequency

Fig. 11 shows the pseudo code for determining the
operating frequency. In this algorithm, inputs of the
algorithm are the operating ranges of two IP's ,a.e.,
a range , (f~ l , fm) and another range , (fm fm). The
algorithm determines the common operating frequency
which equals an integer times the operating frequency
of each IP. In the inner while loop, it searches an
overlapping range between the ranges as the slow IP
range is widened by multiplying an integer number.
If the overlapping range cannot be found in the cur-
rent range of the fast IP, the fast range is widened in
the outer while loop. This iteration is continued until
the overlapped range is found. For example, one IP
operates from 15MHz to 20MHz, and the other IP op-
erates from 42MHz to 44MHz. Then, in the first inner
loop, overlapped ranged is not found, since the integer
multiple ranges of the lower IP are (30MHz, 40MHz),
(45MHz, GOMHz), etc. In outer loop, the range of the
fast IP is changed into (84MHz, 88MHz). The range
is overlapped with (75MHz,lOOMHz) which equals the
five times of the range (15MHz, 20MHz). Finally, the
frequency, 88MHz, is determined as the operating fre-
quency, since it is the highest frequency of overlapped
range, i.e. (84MHz, 88MHz).

4.2 Determining of queue sizing
Some protocols may have strict timing constraints

between one message and the next message. If IP's
based on these protocols are communicated through
the protocol converter and have different operating fre-
quencies, the protocol converter needs internal storage
elements. As shown in Fig. 5, if a message must be sent
every three clocks and received every single clock, the
protocol of the consumer can be violated because mes-
sages are not available in time. This problem is solved
with an internal queue which first stores all messages
for sending and sends the stored messages according
to the consumer protocol. In this case, the objective
is to minimize the internal queue size which can be
formulated as follows:

523

input: fL1,fH17fL2,fH2

while fL2 <= fmar do
output: fcommon

while n . fLl <= m . fH2 do
if (n. fLl, n . f ~ 1) overlap with (m. fLz, m. fH2)

return fcommon = min(n fL1, m . f ~ 2);
else

n = n + l ;
end if

end while
m = m + l ;

end while
return fcommon = cannotfind;

Figure 11. Algorithm for determining of operating
frequency, where assume that f~~ < f~~ and fffl <
f H 2

where Dtotal is the total amount of message sent, Rn10
represents the rate of message sending, R,1 represents
the rate of message reception, where we assumed that
receiving rate is higher than the sending rate.

If a queue size equals Dtotal, then all data can be
stored in the queue and the stored data are sent to
the consumer sequentially. Since a queue can han-
dle receiving and sending of data concurrently, send-
ing operation can be started just after certain amount
of data is stored. In the equation 1, the right term,
lDtotal . R,o/R,I J, corresponds to the data operated
concurrently. For example, if we have a 256 bit mes-
sages and the sending rate and receiving rate are lMbps
and 2Mbps respectively, then the required queue size is
128 bits. The consumer protocol starts just after 128
bit messages are all stored in the internal queue. After
this time, the internal queue stores the remaining 128
bits and sends messages concurrently.

5 Experiment

The proposed approach is applied to an MPEG 2 au-
dio layer 3(MP3) player system through Virtual Chip
System [12,13]. In the MP3 decoder example, the in-
terface part deals with three ports consisting of one
IIC port, two IIS ports, and PCI interface connects
between these ports and the software model. PCI in-
terface operates at 33MHz, while one IIC and two IIS
operate at 500KHz and 3MHz, respectively. Moreover,
the data width of each protocol is not matched.

The decoded bit stream must be supplied continu-
ously to the D/A Converter(DAC) of the MP3 player
system at the bit rate of 3Mbps using IIS protocol.
If the decoded bit stream is infinite, an infinite size
queue which stores all the decoded bit stream is re-
quired, which is infeasible. Moreover, since the MP3
software model requires time for decoding a input bit
stream, a chunk of 16-bit data should be occasionally
supplied through PCI interface. Therefore, the de-
coded bit stream must be divided by certain amount.
In this example, the decoded bit stream is divided by
90.9K bits which correspond to 1M cycles at 33MHz

Figure 12. The lower part shows the block diagram
of an MPEG 2 audio layer 3(MP3) player system.
MP3 decoder(MAS3507D) has three interface ports
which consist of one IIC port, two IIS ports

as shown in equation 2 , though the protocol converter
must infinitely supply it. Thus the required queue size
can be calculated as follows:

IM-cycle
33MHt

x 3Mbps = 90.9Kbit (2) Dtota l =

(4)
33MHz x l6bit = 132Mbps

PO + P1 Rm1 =

Rmo
Rm 1

Queue Size = Dtotal - LDtotal---J = 88.8Kbit (5)

Equation 2 shows the 11s protocol during 1M cycle
transfers 90.9Kbits. In equation 4, (PO + P1) means
the number of clock for single P C I write transaction
which requires minimum 4 cycles. Although this exam-
ple does not show much reduction of queue size, if the
decoded output stream has hi her bit rate, queue size
can be significantly reduced. 1 s shown in Fig. 13, the
11s-to-PCI protocol converter is operated at 33MHz.
Thus the PCI FSM makes a data valid signal for 11s
protocol using a counter which counts from 0 to 10.

11 %:Y 11 --JLrtn:::~::l tlJ
IIS.tePcI hn

Po PI n w RDtosd Conr.n.r

Figure 13. IIS-to-PCI protocol converter: decoded
bit stream is connected to DAC using IIS proto-
col which is lbit serial output and is received
from software using PCI protocol which consists
of three phases. PO-phase is required to initiate
PCI transaction, P1-phase is used to send decoded
data, and P2 is the time for MP3 software decoding
of new IIS data.

6 Conclusion
Integrating IP's that are developed by different ven-

dors is an important issues in the SoC design, as the
different design environment produces different inter-
face protocols and operating frequencies. For the ex-
ploration of large design space in SoC design, the auto-
matic interface synthesis is one of the most important
part. The approach proposed in this paper can be use-
ful to a designer not only to make automatic interface
synthesis but also to consider multi-clock operating en-
vironment. This approach can be started with the op-
erating frequency and queue size determined. Then
the input FSM is modified according to the input and
output path combinations. Finally the conventional
interface synthesis is performed. This approach was
successfully applied to Virtual Chip System in order
to verify the 11s-to-PCI protocol converter on a real
hardware system.
References
[l] Semiconductor Industry Association, San Jose, CA.

International Technology Roadmap for Semiconductors
1998 Update, 1998.

[2] K.Okumura. A Formal Protocol Conversion Method.
In A CM Symposium on Communications, Architec-
tures, and Protocols(SIGCOMM), pages 30-37, Aug.
1986.

[3] S.S.Lam. Protocol Conversion. IEEE Transactions on
Software Engineering, 14(3):353-362, Mar. 1988.

[4] K.L.Calvert and SSLam. Formal Methods for Pro-
tocol Conversion. IEEE Journal on Selected Areas in
Communications, 8(1):127-142, Jan. 1990.

Behavioral Synthesis
with Interface. In IEEE/ACM International Confer-
ence on CAD, pages 112-115, Nov. 1986.

A New Interface Specification Method-
ology and its Applications to Transducer Synthesis.
Ph.D. dissertation, Univ. of California, Berkeley, 1988.

[7] J.Akella and K.McMillan. Synthesizing Converters be-
tween Finite State Protocols. In IEEE International
Conference on Computer Design, pages 410-413, Oct.
1991.

[8] J.S.Sun and R.W.Brodersen. Design of System Inter-
face Modules. In IEEE/A CM International Confer-
ence on CAD, pages 478-481, Nov. 1992.

Interfacing Incompati-
ble Protocols using Interface Process Generation. In
IEEE/ACM Design Automation Conference, pages
468-473, Jun. 1995.

[lo] G.Borriello and R.H.Katz. Synthesis and Optimization
of Interface Transducer Logic. In IEEE/ACM Interna-
tional Conference on CAD, pages 274-277, Nov. 1987.

Automatic Synthe-
sis of Interfaces between Incompatible Protocols. In
IEEE/ACM Design Automation Conference, pages 8-
13, Jun. 1998.

[12] N.Kim, H.Choi, S.Lee, I.-C.Park, and C.-M.Kyung.
Virtual Chip: Making Functional Models Work on
Real Target Systems. In IEEE/ACM Design Automa-
tion Conference, pages 170-173, Jun. 1998.

[13] C.-J.Park, S.Lee, B.-I.Park, H.Choi, J.-G.Lee, Y.-
I.Kim, M.-K. Jung, I.-C.Park, and C.-M.Kyung. Early
In-System Verification of Behavioural Chip Models. In
IEEE International High Level Design Validation and
Test Workshop, pages 61-65, Nov. 1999.

[5] J.A.Nestor and D.E.Thomas.

[6] G.Borriello.

[9] S.Narayan and D.D.Gajski.

[ll] R.Passerone and J.A.Rowson.

524

