
770 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 8, AUGUST 2001

FIR Filter Synthesis Algorithms for Minimizing
the Delay and the Number of Adders

Hyeong-Ju Kang, Student Member, IEEE,and In-Cheol Park, Member, IEEE

Abstract—As the complexity of digital filters is dominated by
the number of multiplications, many works have focused on min-
imizing the complexity of multiplier blocks that compute the con-
stant coefficient multiplications required in filters. Although the
complexity of multiplier blocks is significantly reduced by using ef-
ficient techniques such as decomposing multiplications into simple
operations and sharing common subexpressions, previous works
have not considered the delay of multiplier blocks which is a critical
factor in the design of complex filters. In this paper, we present new
algorithms to minimize the complexity of multiplier blocks under
the given delay constraints. By analyzing multiplier blocks in view
of delay, three delay reduction methods are proposed and com-
bined into previous algorithms. Since the proposed algorithms can
generate multiplier blocks that meet the specified delay, a trade-off
between delay and hardware complexity is enabled by changing the
delay constraints. Experimental results show that the proposed al-
gorithms can reduce the delay of multiplier blocks at the cost of a
little increase of complexity.

Index Terms—Digital filter, filter optimization, FIR filter, mul-
tiplier block.

I. INTRODUCTION

F INITE-IMPULSE response (FIR) digital filters are fre-
quently used in digital signal processing by virtue of

stability and easy implementation. Although programmable
filters based on digital signal processing cores can take an ad-
vantage of flexibility, they are not suitable for recent consumer
applications demanding high throughput and low power con-
sumption. In such an application, therefore, application specific
FIR filters are frequently adopted to meet the constraints of
performance and power consumption.

The problem of designing FIR filters has received a great
attention during the last decade, as the filters are suffering
from a large number of multiplications, leading to excessive
area and power consumption even if implemented in full
custom integrated circuits. Early works have focused on
replacing multiplications by decomposing them into simple
operations such as addition, subtraction and shifting. As the
coefficients of an application specific filter are constant, the
decomposition is more efficient than employing multipliers.
The complexity of FIR filters in this case is dominated by
the number of additions/subtractions used to implement the
coefficient multiplications. To reduce the complexity, the

Manuscript received July 31, 2001. This paper was recommended by Asso-
ciate Editor S. Sriram.

The authors are with the Division of Electrical Engineering, Department of
Electrical Engineering and Computer Science, Korea Advanced Institute of Sci-
ence and Technology, Taejeon, Korea 305-701 (e-mail: dk@ics.kaist.ac.kr; ic-
park@ics.kaist.ac.kr).

Publisher Item Identifier S 1057-7130(01)09606-9.

(a)

(b)

Fig. 1. FIR filter structure. (a) General transposed form. (b) Multiplications
are replaced by a multiplier block.

coefficients can be restricted to powers-of-two or expressed
in canonical signed-digit (CSD) or graph representation to
minimize the number of additions/subtractions required in
each coefficient multiplication. On the average, the CSD
representation can reduce 33% of nonzero digits compared
with the binary representation. The above approaches deal with
each coefficient individually, whereas there is another approach
in which all coefficients are considered as a whole. As shown
in Fig. 1, the hardware block called a multiplier block is used
to implement all coefficient multiplications [1]. The concept
of the multiplier block is significant in both terms of area and
power because some adders and shifters can be shared among
different multiplications.

Many algorithms have been proposed to make the multiplier
block as simple as possible: Bull–Horrocks (BH) algorithm [2],

-dimensional reduced adder graph (RAGn) algorithm [1], re-
cursive bipartite matching algorithm [3], and common subex-
pression sharing algorithm [4]–[6]. The main purpose of these
algorithms is to minimize the number of additions/subt ractions,
as the number is proportional to the number of two-input adders
required in the implementation of a multiplier block and the
shifting can be implemented by wire connections. However, the
algorithms do not take into account a factor critical in high per-
formance filters, the delay of the multiplier block, leading to
slow filters that may not be suitable for high performance sys-
tems.

In this paper, we propose new multiplier block synthesis al-
gorithms that consider both the delay and the number of adders.
Since the proposed algorithm can generate a multiplier block
satisfying a given delay constraint, it enables a trade-off between
delay and area. The rest of this paper is organized as follows, in
Section II, the problem to be solved is formally defined, and in

1057–7130/01$10.00 © 2001 IEEE

KANG AND PARK: FIR FILTER SYNTHESIS ALGORITHMS FOR MINIMIZING 771

Fig. 2. Examples of graph representation.

Section III, some basic operations proposed to make the mul-
tiplier block meet the specified delay constraint are described.
We explain the proposed algorithm and its implementation in
Section IV. Then, we show experimental results in detail in Sec-
tion V, and finally conclusions are made in Section VI.

II. PROBLEM DEFINITION

In this section, the problem to be solved will be defined for-
mally. We will start from introducing the following terms to be
used throughout this paper:

1) CSD Representation:The number is
said to be in CSD representation if no two nonzero digits are
consecutive and the number of nonzero digits is minimal, where
each is in the set and the is often denoted
by ;

2) Graph Representation:This is a graphical method intro-
duced in [2], [7] to represent multiplication by a constant in-
teger, where each vertex except the initial and terminal vertices
means an adder, and each edge is associated with a value to be
multiplied with the left vertex of the edge. The value is a pos-
itive or negative constant of a power of two. The initial vertex
is assigned to 1 and the result of the multiplication is obtained
from the terminal vertex. The example of 45 quoted from [7] is
redrawn in Fig. 2 for easy understanding;

3) Adder-step:One adder-step represents an adder/sub-
tractor in a maximal path of decomposed multiplications. A
multiplication can have different adder-steps, depending on the
structure of multiplication. For example, the CSD value of 45
can have 2 adder-steps or 3 adder-steps if it is implemented in
serial or parallel, respectively, as shown in Fig. 2.

The problem to be solved is described as follows.
Problem 1: Given a delay constraint and a set of filter coeffi-

cients, generate a multiplier block satisfying the delay constraint
such that the number of adders/subtractors is minimal.

As the delay is dependent on several implementation issues
such as circuit technology, placement and routing, we regard in
this paper the delay is specified by the number of adder-steps
that denotes the maximal number of adders/subtractors allowed
to pass though to produce any multiplication. In this case, the
above definition is restated as follows:

Problem 2: Given a maximal number of adder-steps and a
set of filter coefficients, generate a multiplier block that needs a
minimal number of adders/subtractors and does not violate the
number of adder-steps.

To investigate the results of previous algorithms, we will use
the following lemmas.

Lemma 1: For a coefficient multiplication in which the co-
efficient, , is represented by a CSD number withnonzero

digits, the adder-steps required in the multiplication,, is given
by

(1)

where represents an integer no less than. The equality
holds when the multiplication is constructed by using a com-
plete binary tree of adders.

This lemma straightforwardly leads to another lemma de-
scribed below:

Lemma 2: For a set of coefficients, , the
low bound of adder-steps,, required in implementing the mul-
tiplier block is given by

(2)

where is the number of nonzero digits in the CSD format
of .

One simple method of achieving is to construct coeffi-
cients individually by using a separate binary tree of adders for
each , meaning that adders associated withare not shared
with those of other . For a set of coefficients, the minimal
delay of a multiplier block can be calculated by Lemma 2. In
Table I, the number of adder-steps resulted from previous algo-
rithms is compared with for several FIR filters. In the simple
method, each coefficient is represented by a CSD value and con-
structed with a separate binary tree of adders. From this compar-
ison, we can conclude that the previous algorithms are effective
in reducing the number of adders but not optimized for delay
which is inversely proportional to performance. The less delay,
the more performance. Since the previous approaches have tried
to minimize the number of adders in implementing a multiplier
block, they have not taken into account the delay of the multi-
plier block. Therefore, their results are not suitable for the im-
plementation of fast filters. This does not mean that there is no
technical method to achieve a faster filter from the multiplier
block generated from the previous approaches. One simple so-
lution to increase performance is to insert pipeline registers in
the middle of the multiplier block, as shown in Fig. 3. The inser-
tion of pipeline registers has two drawbacks. First, the number
of pipeline registers is numerous in practical filters, thus leads to
excessive area and power. Second, the latency of the multiplier
block can be increased much as each pipeline stage has the same
cycle time. For example, let us assume that the original latency
of the multiplier is 110 ns and the cycle time is 100 ns. In this
case the multiplier block has to be partitioned into two pipeline
stages, resulting in the latency of 200 ns. Hence, it is desired
to develop a new algorithm that can generate a multiplier block
under a given delay constraint.

III. M ETHODS FORREDUCING THENUMBER OFADDER-STEPS

In this section, we explain three basic methods that are essen-
tial in reducing the number of adder-steps. Before starting the
explanation, we briefly introduce two previous filter synthesis
algorithms, BH and RAGn, that are based on the graph represen-
tation. The two algorithms are selected here as they produce the
minimal number of adders among many published algorithms.

The first step of the BH algorithm [2] is to convert all the
given coefficients into the positive odd numbers by negating the

772 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 8, AUGUST 2001

TABLE I
FILTER SYNTHESIS RESULTS OF THEPREVIOUS ALGORITHMS

Fig. 3. Pipelined multiplier block.

negative ones and dividing them by the greatest power-of-two.
Sorting them in ascending order, the algorithm synthesizes the
changed coefficients one by one by using add, subtract, and shift
operations. To synthesize a coefficient, a pair of partial sums
whose sum or difference of scaled versions is closest to the co-
efficient being synthesized is selected. And the sum or differ-
ence becomes a new partial sum. If the sum or difference is not
the same as the coefficient, selecting a pair of partial sums is
repeated until the sum or difference has the same value as the
coefficient being synthesized. This process is continued until all
coefficients are synthesized.

As identified in [1], the BH algorithm has three limitations.
The first is that partial sums are generated with values only up
to, but not exceeding, the coefficient. The second is that even
valued partial sums can be entered in the partial sum set, and the
third is that the coefficients are processed in numerical order. In
order to overcome these limitations a modified version of the
BH algorithm, called BHM, is proposed and a new algorithm,
called RAGn, is also proposed in [1]. The major difference be-
tween the BHM algorithm and the RAGn algorithm is that the
coefficient which requires the least number of adders is first syn-
thesized in the RAGn algorithm while in the BHM algorithm the
coefficients are synthesized in the previously defined order. The
RAGn algorithm is divided into two parts. The first part is op-
timal and the second part is heuristic. In the optimal part, the
coefficients that can be synthesized with one adder are synthe-
sized. If all the coefficients are synthesized in the optimal part,
it is guaranteed that the number of adders is minimal. This is
the reason why this part is called optimal. When some coef-
ficients cannot be synthesized in the optimal part, the heuristic
part is progressed. The first step in the heuristic part is to synthe-
size the coefficients which can be synthesized with two adders.
Only two cases are considered in [1], but there are three cases
to be considered. It will be discussed in the next section. The
second step in the heuristic part is to synthesize a coefficient
that requires the least number of adders. In [1], the minimum
adder graph (MAG) algorithm [7] is used for the comparison
of the number of adders in this step, but its use is limited up to
12 bandwidth. In this paper, therefore, the number of nonzero
digits is used for the comparison. Although the multiplier block

(a)

(b)

Fig. 4. Graph representations of synthesizing 3, 13, 219, and 221. (a) By the
BHM algorithm. (b) By the RAGn algorithm.

Fig. 5. Tree reduction.

resulted from the RAGn algorithm is superior to that from the
BHM algorithm, the RAGn algorithm suffers from large amount
of memory and computation time.

In Fig. 4, a set of coefficients is synthesized
to compare the BHM algorithm and the RAGn algorithm. The
coefficients are synthesized with 5 adders in the BHM algo-
rithm and 4 adders in the RAGn algorithm while with 9 adders in
the form of canonical signed digit (CSD) representation. Com-
paring the delay, only 2 adder-steps are required in the form
of CSD while 4 adder-steps are taken in the BHM algorithm
and the RAGn algorithm. Therefore, the BHM algorithm and
the RAGn algorithm are good for reducing area but not opti-
mized in the view of speed. As the partial sums are added in a
serial manner and the number of adder-steps increased by in-
cluding a partial sum is not considered in selecting the partial
sum, those algorithms have a limitation in reducing the number
of adder-steps. To overcome the limitation, the following three
methods are proposed.

A. Tree Reduction

In constructing coefficients by using the BHM algorithm or
the RAGn algorithm, several partial sums are selected and added
in a serial manner as shown in the left of Fig. 5. It is obvious that
the serial structure increases the number of adder-steps. Though
the cases do not occur frequently, their effect on the number of
adder-steps is significant. If such a case occurs, it increases the

KANG AND PARK: FIR FILTER SYNTHESIS ALGORITHMS FOR MINIMIZING 773

number of adder-steps by 3 or more. To reduce the number of
steps for the cases, we can employ the tree reduction technique
illustrated in Fig. 5. The tree reduction technique is used to con-
vert the serial adding structure to a parallel one. Since each par-
tial sum requires a different number of adder-steps, the partial
sums requiring a less number of adder-steps should be added
earlier.

It is difficult to consider this in the BHM algorithm in which
the sum or difference of a selected pair of partial sums becomes
a new partial sum. In the proposed tree reduction technique, the
sum or difference is put into a temporary set instead of directly
putting into the partial sum set. When the synthesis of a coeffi-
cient is completed, the partial sums stored in the temporary set
are sorted in ascending order of their number of adder-steps, and
the partial sums with smaller numbers of adder-steps are added
earlier. The algorithm to make a tree structure of adders is as
follows, whereNumTempis the number of partial sums in the
initial temporary set.

Step 1) Sort the partial sums in the temporary set in as-
cending order of their numbers of adder-steps.

Step 2) Select the first two partial sums in the order, that is,
two partial sums that have the smallest number of
adder-steps.

Step 3) Add (or subtract) them and insert the sum (or differ-
ence) into the partial sum set. They are removed in
the temporary set and the sum (or difference) is in-
serted into the temporary set as a new partial sum.

Step 4) DecrementNumTemp.
Step 5) IfNumTempis not one, go to Step 1.

B. Limited Selection Method

In this and the next subsection, we propose methods to de-
sign a multiplier block satisfying a given delay specified by the
number of adder-steps. In our investigations on the previous al-
gorithms, we found that a coefficient is synthesized by a series
of partial sums and the number of adder-steps for the coeffi-
cient is determined mostly by the first pair of partial sums in
that series, that is, the adder-steps required to synthesize the first
pair of partial sums has a great effect on the final number of
adder-steps. If we can start from a pair requiring small numbers
of adder-steps in implementing its partial sums, the coefficient
can be synthesized with a less number of adder-steps. The basic
idea is to select the first pair from a limited set of partial sums
whose adder-steps are less than or equal to a given number. An
example is illustrated in Fig. 6, where the following terms are
used:

InitRange: upper limit of the number of adder-steps
that the partial sums in the first selected
pair can have;

SearchRange: upper limit of the number of adder-steps
that the partial sums selected at that mo-
ment can have;

CandidateSet: subset of partial sums that have the number
of adder-steps are equal to or less than
SearchRange.

In Fig. 6, the first pair of partial sums shown at the bottom is
selected by settingSearchRangeto InitRange. Then theCan-

Fig. 6. Limited selection method.

didateSetis limited to adderStep SearchRange

InitRange , whereadderStep is the number of adder-steps
needed for the partial sum. To select a new partial sum,
SearchRangeis increased by one and theCandidateSet
is less limited to adderStep SearchRange

InitRange . At the next time,SearchRangeis increased
by one again. If a coefficient is to be synthesized with four
partial sums as shown in Fig. 6, it is guaranteed that the
number of adder-steps for the coefficient is less than or equal to
InitRange . As started from a limited set of partial sums,

this method is referred to asLimited Selection Method.
The complete description of the limited selection method is

as follows. In order to least restrict theCandidateSetfor the
first pair, we begin with the maximally allowableInitRangethat
is one less than the specified number of adder-steps. And then
SearchRangeis set toInitRangeand is increased after each se-
lection of a partial sum. Therefore, the partial sum selected later
will be selected from the less restrictedCandidateSet. After the
first pair is selected, the error between the coefficient being syn-
thesized and the sum or difference of the selected pair is calcu-
lated and a new partial sum is generated. The selection proce-
dure is iterated until the sum or difference coincides with the co-
efficient. In the iteration, partial sums are selected one by one.
As mentioned above,SearchRangeis increased after each se-
lection, and a less restrictedCandidateSetis considered in the
later selection. After synthesizing the coefficient, it is examined
whether the synthesis of the coefficient meets the specification
or not. If not, another iteration is repeated after decrementing
InitRangeand reducing theCandidateSetfor the first pair. If the
iteration reaches to a situation in whichInitRangeis less than
1 or theCandidateSetcannot be reduced, we conclude that this
method cannot synthesize the coefficient under the given delay
constraint. The coefficient given up will be synthesized by the
method to be explained in the next subsection.

The detailed procedure of this method is as follows.

Step 1) InitRangeis set to the limit of the number of adder-
steps specified by the user subtracted by 1.

Step 2) SearchRange InitRange.
Step 3) CandidateSet is a partial sum that has

the number of adder-steps equal to or less than
SearchRange.

Step 4) Select a pair of partial sums inCandidateSetwhose
sum or difference of scaled versions is closest to the
coefficient being synthesized. The sum or difference
becomes a new partial sum. If the error value rep-
resenting the difference between the coefficient and
the sum or difference is zero, go to Step 7).

774 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 8, AUGUST 2001

Fig. 7. Adding structure for achieving the minimum number of adder-steps.

Step 5) IfSearchRangeis less than the limit of the number
of adder-steps specified by the user subtracted
by 1, SearchRangeis incremented by 1, and the
CandidateSetis constructed again with the new
SearchRange.

Step 6) Select a partial sum inCandidateSetwhose scaled
version is closest to the error value. A new partial
sum is generated with the scaled partial sum, and
the error value is reset to the difference between the
current error value and the partial sum. If the error
value is not zero, go to Step 5).

Step 7) If the number of adder-steps for the coefficient being
synthesized is equal to or less than the specification
of the number of adder-steps, end.

Step 8) InitRangeis decremented by 1. IfInitRangeis less
than zero, give up. Otherwise, go to Step 2).

C. Minimum Adder-Step Method

The method is invoked when some coefficients are not
synthesized using the above two methods. It is induced from
the structure of the minimum number of adder-steps. If we
want to synthesize a coefficient with the minimum number
of adder-steps, we represent it in the CSD form and add the
nonzero digits using the tree structure illustrated in Fig. 7.

In the minimum adder-step method, the procedure for the
minimum number of adder-steps is progressed step by step. One
of the remained coefficients that do not satisfy the specification
is selected, and for convenience let us call the coefficient. A
pair of nonzero digits in the CSD form of is selected. Though
any pair can be randomly selected, we select two nonzero digits
at the lower bit location in our implementation. The value of
the pair is calculated and becomes a new partial sum. Next,
the methods described in the above subsections are progressed
again for the remained coefficients. If the coefficientis syn-
thesized with satisfying the specification in the new iteration,
another coefficient not synthesized with a satisfactory number
of adder-steps is selected and a new partial sum is generated by
selecting a new pair of nonzero digits in the CSD form of the co-
efficient. If the coefficient does not satisfy the specification in
the new iteration, another pair of nonzero digits is selected from
its CSD, excluding the previously selected pair. The selected
pair becomes a new partial sum and the methods described in
the above subsections are processed again. This procedure can
be iterated until the coefficient has no pair of nonzero digits.
As the procedure is basically the same as synthesizing a coeffi-
cient with the minimum number of adder-steps, any coefficient
can be synthesized with satisfying the specification unless the

Fig. 8. An example of the minimum adder-step method.

Fig. 9. Overall procedure of SLBHM.

specification is less than the minimum number of adder-steps.
An example of this method is illustrated in Fig. 8, where we
assume that a coefficient of 405, or , is not synthe-
sized in the above methods.

IV. PROPOSEDALGORITHMS

In this section, we describe two proposed algorithms that
can generate multiplier blocks satisfying the given delay con-
straint. The proposed algorithms are based on three methods
of reducing the number of adder-steps and two previous algo-
rithms, the BHM algorithm and the RAGn algorithm.

KANG AND PARK: FIR FILTER SYNTHESIS ALGORITHMS FOR MINIMIZING 775

Fig. 10. Appearance of the filter syntheisis tool.

A. Step-Limiting BHM Algorithm (SLBHM)

Three methods explained in the previous subsections, tree
reduction, limited selection method and minimum adder-step
method, can be combined with the BHM algorithm. To synthe-
size a coefficient, the partial sums selected for the coefficient
are put into the temporary set and rearranged by the tree re-
duction technique. After each synthesis, it is examined whether
the synthesis satisfies the specification. If it is, a new synthesis
starts for another coefficient. Otherwise, the candidate set where
the partial sums are selected is changed by the limited selec-
tion method. This is iterated until all coefficients are tried. As
stated before, however, the limited selection method does not
guarantee the synthesis of all coefficients. If all coefficients are
not synthesized, a new partial sum is generated by the min-
imum adder-step method and the procedure is repeated. The
flow chart of the new algorithm named as “Step-Limiting BHM
algorithm(SLBHM)” is shown in Fig. 9. Details are described
below only for the steps that need to be explained.

Step 3) After negating the negative coefficients, even coef-
ficients are divided by the largest power-of-two to
make them odd numbers.

Step 4) Pick one coefficient that is not synthesized yet.
Step 5) Build the coefficient selected in Step 4). A pair of

partial sums is selected repetitively, and new partial
sums are generated as in the BHM algorithm.

Step 6) The partial sums which are selected in Step 5) are
rearranged by the tree reduction technique.

Step 8) When the specification is not satisfied, the limited
selection method is progressed in Steps 8) and 9).
Examine whether the candidate set can be reduced.
If the candidate set cannot be reduced, give up the
coefficient and pick another coefficient Step 4).

Step 12)When some coefficients are given up, the minimum
adder-step method is applied. One new partial sum
is generated from a coefficient that is given up in
Step 8).

B. Step-Limiting RAGn Algorithm (SLRAGn)

The limitation method can be easily applied to the RAGn al-
gorithm. In the optimal part of the RAGn algorithm, the par-
tial sums whose number of adders-steps are less than the spec-
ification are searched. If one coefficient is synthesized at the
optimal part only using such partial sums, it satisfies the spec-
ification. The heuristic part can be divided into two parts: the
cost-2 part that requires two adders and the cost-more part that
needs more than two adders. Two cases of the cost-2 part are
described in [1]. One is that a scaled version of 1 and two par-
tial sums are added and the other is that two scaled versions of
1 and one partial sum are added. However, there is one more
case that three scaled partial sums are added. If we regard 1 as
a partial sum, these three cases can be assembled to only one
case that three scaled partial sums are added. As the case that
more than two selected partial sums require (specification-1)
adder-steps is unacceptable, such partial sums that make the

776 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 48, NO. 8, AUGUST 2001

TABLE II
TEST FILTER SPECIFICATION

TABLE III
NUMBERS OFADDERS FORFILTER 1

case are excluded in the selection of partial sums. In order to re-
duce adder-steps, the cost-more part is replaced by the minimum
adder-step method because the cost-more part is very heuristic
and can be replaced by any reasonable procedure. We name this
algorithm as “Step-Limiting RAGn algorithm(SLRAGn).”

C. Filter Synthesis Tool

The proposed algorithms are implemented in C language and
incorporated into a filter synthesis tool, as shown in Fig. 10.
Given the set of coefficients for a target filter and the number
of adder-steps, the tool can synthesize a multiplier block of the
filter and generate a hardware description in Verilog hardware
description language. For the implementation of the multiplier
block, carry-save adders are used to minimize area and delay,
while for the serial addition stage under the multiplier block
shown at the bottom of Fig. 10, the tool supports two adder
types, carry-propagation adders and carry-save adders.

Besides the proposed algorithms, several previous algorithms
such as the BHM algorithm and the RAGn algorithm are sup-
ported in the tool.

V. EXPERIMENTAL RESULTS

The proposed algorithms are applied to several FIR filters and
compared with previous algorithms. The specifications of those
filters are summarized in Table II, where and are normal-
ized passband frequency and stopband frequency, respectively,
#Tapis the number of taps, andWidth is the word size in fixed
point integer representation. The coefficients of test filters are
generated with specifying , and#Tapusing the Remez al-
gorithm in MATLAB and are converted to integer numbers with
rounding. The passband and stopband frequency of the first filter
in Table II are quoted from the example in [8].

In Table III, the results of filter 1 obtained by the previous
and proposed algorithms are shown. The first column is the
number of adder-steps for the multiplier block optimized by the
algorithms identified in the first row, and the contents of the
table is the number of adders needed to implement the multi-
plier block. So the BHM algorithm produces a multiplier block
of 14 adders and 4 adder-steps, and the RAGn algorithm pro-
duces that of 14 adders and 5 adder-steps. The SLBHM algo-
rithm produces two multiplier blocks: one is with 14 adders and
4 adder-steps and the other with 17 adders and 3 adder-steps.

TABLE IV
NUMBERS OFADDERS FORFILTER 2

TABLE V
NUMBERS OFADDERS FORFILTER 3

TABLE VI
NUMBERS OFADDERS FORFILTER 4

The SLRAGn algorithm provides three multiplier blocks. The
first one is with 14 adders and 5 adder-steps, the second one
with 14 adders and 4 adder-steps, and the last with 16 adders
and 3 adder-steps. Notice that the previous algorithms, BHM
and RAGn, give only one result and do not allow to specify
the maximum number of adder-steps, while the proposed al-
gorithm, SLBHM and SLRAGn, provide several results under
the given delay constraint. It can be seen easily that the number
of adder-steps can be reduced by 1 or 2 with additional 2 or 3
adders.

Similar results can be seen in Tables IV–VI which repre-
sent the results for filter 2, 3, and 4, respectively. For filter 2,
three multiplier blocks are synthesized using the SLBHM algo-
rithm and the SLRAGn algorithm. In addition, one result of the
SLRAGn is superior to that of the RAGn in that both the number
of adders and the number of adder-steps are smaller than those
of the RAGn. For filter 3, 3 and 6 multiplier blocks are gen-
erated by the SLBHM algorithms and the SLRAGn algorithm,
respectively. For filter 4, 4 and 8 multiplier blocks are gener-
ated. The overhead of reducing the number of adder-steps in the
proposed algorithms is not significant. For filter 2, 10 and 4 ad-
ditional adders are required to reduce 2 and 4 adder-steps. For
filter 3, 4 and 8 adders are needed to reduce 2 and 5 adder-steps
and for filter 4, 21 and 12 adders are needed to reduce 5 and 7
adder-steps, respectively.

This implies the proposed algorithms enable the trade-off be-
tween the number of adders and the number of adder-steps, e.g.,

KANG AND PARK: FIR FILTER SYNTHESIS ALGORITHMS FOR MINIMIZING 777

between the area and the speed. In some cases, only 10% over-
head is required to reduce the number of adder-steps by half.
The last point to be noted in the tables is that the SLBHM algo-
rithm and the SLRAGn algorithm can produce a multiplier block
with the minimum number of adder-steps. This is obvious be-
cause the minimum adder-step method guarantees the synthesis
of any coefficients when the specification is more than or equal
to the minimum number of adder-steps.

VI. CONCLUSION

Delay is as important as area. But in the previous works, only
area, or the number of adders, is considered in implementing
and optimizing filters. In this paper, we have described FIR filter
synthesis algorithms that take into account delay, or the number
of adder-steps, as well as area. By combining three proposed
methods to the BHM algorithm and the RAGn algorithm which
are developed in the previous works, we can implement filters
satisfying the given specification of the number of adder-steps.
Contrast to the previous works that generate only one tuple of
the number of adders and the number of adder-steps, many tu-
ples are generated in the proposed algorithms and, therefore,
a trade-off between the number of adders and the number of
adder-steps, that is, between area and speed is enabled. Experi-
mental results show that the proposed algorithms can reduce the
delay of multiplier blocks at the cost of a little increase of com-
plexity.

REFERENCES

[1] A. G. Dempster and M. D. Macleod, “Use of minimum adder multiplier
blocks in FIR digital filters,”IEEE Trans. Circuits Syst. II, vol. 42, pp.
569–577, Sept. 1995.

[2] D. R. Bull and D. H. Horrocks, “Primitive operator digital filters,”Proc.
Inst. Elect. Eng., pt. G, vol. 138, pp. 401–412, Mar. 1991.

[3] M. Potkonjak, M. B. Srivastava, and A. Chandrakasan, “Efficient substi-
tution of multiple constant multiplications by shifts and additions using
iterative pairwise matching,” inProc. 31st ACM/IEEE Design Automa-
tion Conf., 1994, pp. 189–194.

[4] R. I. Hartley, “Subexpression sharing in filters using canonic signed digit
multipliers,” IEEE Trans. Circuits Syst. II, vol. 43, pp. 677–688, Oct.
1996.

[5] R. Păsko, P. Schaumont, V. Derudder, S. Vernalde, and D.D̆urăcková,
“A new algorithm for elimination of common subexpressions,”IEEE
Trans. Computer-Aided Design, vol. 18, pp. 58–68, Jan. 1999.

[6] J. T. Kim, “Design and implementation of computationally efficient FIR
filters, and scalable VLSI architectures for discrete wavelet transform,”
Ph.D. dissertation, Korea Advanced Institute of Science and Technology,
Taejon, Korea, 1998.

[7] A. G. Dempster and M. D. Macleod, “Constant integer multiplication
using minimum adders,”Proc. Inst. Elect. Eng.—Circuits Devices Sys-
tems, vol. 141, pp. 407–413, May 1994.

[8] H. Samueli, “An improved search algorithm for the design of multiplier-
less FIR filters with powers-of-two coefficients,”IEEE Trans. Circuits
Syst., vol. CAS-36, pp. 1044–1047, July 1989.

[9] R. Jain, P. T. Yang, and T. Yoshino, “FIRGEN: A computer-aided design
system for high performance FIR filter integrated circuits,”IEEE Trans.
Signal Processing, vol. 39, pp. 1655–1668, July 1991.

[10] T. Yoshino, R. Jain, P. T. Yang, H. Davis, W. Gass, and A. H. Shah, “A
100-MHz 64-Tap FIR digital filter in 0.8-um BiCMOS gate array,”IEEE
J. Solid-State Circuits, vol. 25, pp. 1494–1501, June 1990.

[11] Y. C. Lim, J. B. Evans, and B. Liu, “Decomposition of binary integers
into signed power-of-two terms,”IEEE Trans. Circuits Syst., vol. 38, pp.
667–672, June 1991.

[12] M. Mehendale, S. D. Sherlekar, and G. Venkatesh, “Synthesis of mul-
tiplier-less FIR filters with minimum number of additions,” inProc.
IEEE/ACM Int. Conf. on Computer Aided Design, 1995, pp. 668–671.

Hyeong-Ju Kang(S’00) received the M.S. and B.S.
degrees in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Taejeon, Korea, in 1998 and 2000,
respectively. He is currently pursuing the Ph.D.
degree in the Department of Electrical Engineering
and Computer Science at KAIST.

His research interests include VLSI design for
signal processing and multimedia.

In-Cheol Park (S’88–M’92) received the B.S. de-
gree in electronic engineering from Seoul National
University, Seoul, Korea, and the M.S. and Ph.D.
degrees in electrical engineering from the Korea
Advanced Institute of Science and Technology
(KAIST), Taejeon, Korea, in 1986, 1988, and 1992,
respectively.

From 1995 to 1996, he was with the postdoctoral
technical staff at IBM T.J. Watson Research Center,
Yorktown, NY. In 1996, he became a professor in the
Department of Electrical Engineering and Computer

Science at KAIST. His research interest includes CAD algorithms for high-level
synthesis and VLSI architectures for general-purpose microprocessors.

